
Soft Patch Panel Documentation
Release 19.11

Jul 01, 2020

Contents

1 Overview 1

2 Design 2
2.1 Soft Patch Panel . 2
2.2 SPP Controller . 2
2.3 SPP Primary . 3
2.4 SPP Secondary . 4
2.5 Implementation . 7

3 Getting Started Guide 17
3.1 Setup . 17
3.2 Install DPDK and SPP . 21
3.3 How to Use . 27
3.4 Performance Optimization . 41

4 Use Cases 44
4.1 spp_nfv . 44
4.2 spp_vf . 51
4.3 spp_mirror . 59
4.4 spp_pcap . 65
4.5 Multiple Nodes . 68
4.6 Hardware Offload . 71
4.7 Pipe PMD . 75

5 SPP Commands 78
5.1 Primary Commands . 78
5.2 Secondary Commands . 83
5.3 Common Commands . 96
5.4 Experimental Commands . 101

6 Tools 106
6.1 SPP Container . 106
6.2 Helper tools . 145
6.3 Vdev_test . 147

7 API Reference 149
7.1 spp-ctl REST API . 149

i

7.2 Independent of Process Type . 150
7.3 spp_primary . 153
7.4 spp_nfv . 162
7.5 spp_vf . 167
7.6 spp_mirror . 175
7.7 spp_pcap . 179

8 Bug Report 183

ii

CHAPTER 1

Overview

Soft Patch Panel (SPP) is a DPDK application for providing switching functionality for Service
Function Chaining in NFV (Network Function Virtualization).

Fig. 1.1: SPP overview

With SPP, user is able to configure network easily and dynamically via simple patch panel like
interface.

The goal of SPP is to easily interconnect NFV applications via high thoughput network inter-
faces provided by DPDK and change configurations of resources dynamically to applications
to build pipelines.

1

http://dpdk.org/browse/apps/spp/

CHAPTER 2

Design

2.1 Soft Patch Panel

SPP is composed of several DPDK processes and controller processes for connecting each of
client processes with high-throughput path of DPDK. Fig. 2.1 shows SPP processes and client
apps for describing overview of design of SPP. In this diagram, solid line arrows describe a data
path for packet forwarding and it can be configured from controller via command messaging of
blue dashed line arrows.

Fig. 2.1: Overview of design of SPP

In terms of DPDK processes, SPP is derived from DPDK’s multi-process sample application
and it consists of a primary process and multiple secondary processes. SPP primary process is
responsible for resource management, for example, initializing ports, mbufs or shared memory.
On the other hand, secondary processes of spp_nfv are working for forwarding [1].

2.1.1 Reference

• [1] Implementation and Testing of Soft Patch Panel

2.2 SPP Controller

SPP is controlled from python based management framework. It consists of front-end CLI
and back-end server process. SPP’s front-end CLI provides a patch panel like interface for
users. This CLI process parses user input and sends request to the back-end via REST
APIs. It means that the back-end server process accepts requests from other than CLI. It
enables developers to implement control interface such as GUI, or plugin for other framework.
networking-spp is a Neutron ML2 plugin for using SPP with OpenStack. By using networking-
spp and doing some of extra tunings for optimization, you can deploy high-performance NFV
services on OpenStack [1].

2

https://www.dpdk.org/wp-content/uploads/sites/35/2018/06/Implementation-and-Testing-of-Soft-Patch-Panel.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2018/06/Implementation-and-Testing-of-Soft-Patch-Panel.pdf
https://github.com/openstack/networking-spp
https://www.openstack.org/summit/vancouver-2018/summit-schedule/events/20826

Soft Patch Panel Documentation, Release 19.11

2.2.1 spp-ctl

spp-ctl is designed for managing SPP from several controllers via REST-like APIs for users
or other applications. It is implemented to be simple and it is stateless. Basically, it only
converts a request into a command of SPP process and forward it to the process without any
of syntax or lexical checking.

There are several usecases where SPP is managed from other process without user inputs.
For example, you need a intermediate process if you think of using SPP from a framework,
such as OpenStack. networking-spp is a Neutron ML2 plugin for SPP and spp-agent works as
a SPP controller.

As shown in Fig. 2.2, spp-ctl behaves as a TCP server for SPP primary and secondary pro-
cesses, and REST API server for client applications. It should be launched in advance to setup
connections with other processes. spp-ctl uses three TCP ports for primary, secondaries
and clients. The default port numbers are 5555, 6666 and 7777.

Fig. 2.2: Spp-ctl as a REST API server

spp-ctl accepts multiple requests at the same time and serializes them by using bottle which
is simple and well known as a web framework and eventlet for parallel processing.

2.2.2 SPP CLI

SPP CLI is a user interface for managing SPP and implemented as a client of spp-ctl. It
provides several kinds of command for inspecting SPP processes, changing path configura-
tion or showing statistics of packets. However, you do not need to use SPP CLI if you use
netowrking-spp or other client applications of spp-ctl. SPP CLI is one of them.

From SPP CLI, user is able to configure paths as similar as patch panel like manner by sending
commands to each of SPP secondary processes. patch phy:0 ring:0 is to connect two
ports, phy:0 and ring:0.

As described in Getting Started guide, SPP CLI is able to communicate several spp-ctl to
support multiple nodes configuration.

2.2.3 Reference

• [1] Integrating OpenStack with DPDK for High Performance Applications

2.3 SPP Primary

SPP is originally derived from Client-Server Multi-process Example of Multi-process Sample
Application in DPDK’s sample applications. spp_primary is a server for other secondary
processes and basically working same as described in “How the Application Works” section of
the sample application.

However, there are some differences between spp_primary and the server process of the
sample application. spp_primary has no limitation of the number of secondary processes.
It does not work for packet forwaring without in some usecases, but just provide rings and
memory pools for secondary processes.

2.3. SPP Primary 3

https://github.com/openstack/networking-spp
https://bottlepy.org/docs/dev/
http://eventlet.net/
https://www.openstack.org/summit/vancouver-2018/summit-schedule/events/20826
https://doc.dpdk.org/guides/sample_app_ug/multi_process.html#client-server-multi-process-example
https://doc.dpdk.org/guides/sample_app_ug/multi_process.html
https://doc.dpdk.org/guides/sample_app_ug/multi_process.html

Soft Patch Panel Documentation, Release 19.11

Primary process supports rte_flow of DPDK for hardware offloading. Packet distribution
based on dst MAC address and/or VLAN ID is supported. Entag/detag of VLAN is also sup-
ported.

2.3.1 Master and Worker Threads

In SPP, Both of primary and secondary processes consist of master thread and worker thread
as slave. Master thread is for accepting commands from a user for doing task, and running
on a master lcore. On the other hand, slave thread is for packet forwarding or other pro-
cess specific jobs as worker, and running on slave lcore. Only slave thread requires ded-
icated core for running in pole mode, and launched from rte_eal_remote_launch() or
rte_eal_mp_remote_launch().

spp_primary is able to run with or without worker thread selectively, and requires at least
one lcore for server process. Using worker thread or not depends on your usecases.
spp_primary provides two types of workers currently.

2.3.2 Worker Types

There are two types of worker thread in spp_primary. First one is is forwarder thread, and
second one is monitor thread.

As default, spp_primary runs packet forwarder if two or more lcores are given while launching
the process. Behavior of this forwarder is same as spp_nfv described in the next section.
This forwarder provides features for managing ports, patching them and forwarding packets
between ports. It is useful for very simple usecase in which only few ports are patched and no
need to do forwarding packets in parallel with several processes.

Note: In DPDK v18.11 or later, some of PMDs, such as vhost, do not work for multi-process
application. It means that packets cannot forwarded to a VM or container via secondary pro-
cess in SPP. In this case, you use forwarder in spp_primary.

Another type is monitor for displaying status of spp_primary in which statistics of RX and
TX packets on each of physical ports and ring ports are shown periodically in terminal
spp_primary is launched. Although statistics can be referred in SPP CLI by using pri;
status command, running monitor thread is useful if you always watch statistics.

2.4 SPP Secondary

SPP secondary process is a worker process in client-server multp-process application model.
Basically, the role of secondary process is to connenct each of application running on host,
containers or VMs for packet forwarding. Spp secondary process forwards packets from source
port to destination port with DPDK’s high-performance forwarding mechanizm. In other word,
it behaves as a cable to connect two patches ports.

All of secondary processes are able to attach ring PMD and vhost PMD ports for sending
or receiving packets with other processes. Ring port is used to communicate with a process
running on host or container if it is implemented as secondary process to access shared ring

2.4. SPP Secondary 4

Soft Patch Panel Documentation, Release 19.11

memory. Vhost port is used for a process on container or VM and implemented as primary
process, and no need to access shared memory of SPP primary.

In addition to the basic forwarding, SPP secondary process provides several networking fea-
tures. One of the typical example is packet cauture. spp_nfv is the simplest SPP secondary
and used to connect two of processes or other feature ports including PCAP PMD port. PCAP
PMD is to dump packets to a file or retrieve from.

There are more specific or funcional features than spp_nfv. spp_vf is a simple pseudo SR-
IOV feature for classifying or merging packets. spp_mirror is to duplicate incoming packets
to several destination ports.

2.4.1 spp_nfv

spp_nfv is the simplest SPP secondary to connect two of processes or other feature ports.
Each of spp_nfv processes has a list of entries including source and destination ports, and
forwards packets by referring the list. It means that one spp_nfv might have several for-
warding paths, but throughput is gradually decreased if it has too much paths. This list is
implemented as an array of port structure and named ports_fwd_array. The index of
ports_fwd_array is the same as unique port ID.

struct port {
int in_port_id;
int out_port_id;
...

};
...

/* ports_fwd_array is an array of port */
static struct port ports_fwd_array[RTE_MAX_ETHPORTS];

Fig. 2.3 describes an example of forwarding between ports. In this case, spp_nfv is respon-
sible for forwarding from port#0 to port#2. You notice that each of out_port entry has the
destination port ID.

Fig. 2.3: Forwarding by referring ports_fwd_array

spp_nfv consists of main thread and worker thread to update the entry while running the
process. Main thread is for waiting user command for updating the entry. Worker thread is for
dedicating packet forwarding. Fig. 2.4 describes tasks in each of threads. Worker thread is
launched from main thread after initialization. In worker thread, it starts forwarding if user send
forward command and main thread accepts it.

Fig. 2.4: Main thread and worker thread in spp_nfv

2.4.2 spp_vf

spp_vf provides a SR-IOV like network feature.

spp_vf forwards incoming packets to several destination VMs by referring MAC address like
as a Virtual Function (VF) of SR-IOV.

2.4. SPP Secondary 5

Soft Patch Panel Documentation, Release 19.11

spp_vf is a multi-process and multi-thread application. Each of spp_vf has one manager
thread and worker threads called as components. The manager thread provides a function
for parsing a command and creating the components. The component threads have its own
multiple components, ports and classifier tables including Virtual MAC address. There are
three types of components, forwarder, merger and classifier.

This is an example of network configuration, in which one classifier, one merger and four
forwarders are running in spp_vf process for two destinations of vhost interface. Incoming
packets from rx on host1 are sent to each of vhosts of VM by looking up destination MAC
address in the packet.

Fig. 2.5: Classification of spp_vf for two VMs

Forwarder

Simply forwards packets from rx to tx port. Forwarder does not start forwarding until when at
least one rx and one tx are added.

Merger

Receives packets from multiple rx ports to aggregate packets and sends to a desctination port.
Merger does not start forwarding until when at least two rx and one tx are added.

Classifier

Sends packets to multiple tx ports based on entries of MAC address and destination port in a
classifier table. This component also supports VLAN tag.

For VLAN addressing, classifier has other tables than defalut. Classifier prepares tables for
each of VLAN ID and decides which of table is referred if TPID (Tag Protocol Indetifier) is
included in a packet and equals to 0x8100 as defined in IEEE 802.1Q standard. Classifier
does not start forwarding until when at least one rx and two tx are added.

2.4.3 spp_mirror

spp_mirror is an implementation of TaaS as a SPP secondary process for port mirroring.
TaaS stands for TAP as a Service. The keyword mirror means that it duplicates incoming
packets and forwards to additional destination.

Mirror

mirror component has one rx port and two tx ports. Incoming packets from rx port are
duplicated and sent to each of tx ports.

Fig. 2.6: Spp_mirror component

In general, copying packet is time-consuming because it requires to make a new region on
memory space. Considering to minimize impact for performance, spp_mirror provides a

2.4. SPP Secondary 6

https://docs.openstack.org/dragonflow/latest/specs/tap_as_a_service.html

Soft Patch Panel Documentation, Release 19.11

choice of copying methods, shallowocopy or deepcopy. The difference between those
methods is shallowocopy does not copy whole of packet data but share without header
actually. shallowcopy is to share mbuf between packets to get better performance than
deepcopy, but it should be used for read only for the packet.

Note: shallowcopy calls rte_pktmbuf_clone() internally and deepcopy create a new
mbuf region.

You should choose deepcopy if you use VLAN feature to make no change for original packet
while copied packet is modified.

2.4.4 spp_pcap

SPP provides a connectivity between VM and NIC as a virtual patch panel. However, for more
practical use, operator and/or developer needs to capture packets. For such use, spp_pcap
provides packet capturing feature from specific port. It is aimed to capture up to 10Gbps
packets.

spp_pcap is a SPP secondary process for capturing packets from specific port. Fig. 2.7
shows an overview of use of spp_pcap in which spp_pcap process receives packets from
phy:0 for capturing.

Note: spp_pcap supports only two types of ports for capturing, phy and ring, currently.

Fig. 2.7: Overview of spp_pcap

spp_pcap cosisits of main thread, receiver thread and one or more wirter threads. As
design policy, the number of receiver is fixed to 1 because to make it simple and it is enough
for task of receiving. spp_pcap requires at least three lcores, and assign to from master,
receiver and then the rest of writer threads respectively.

Incoming packets are received by receiver thread and transferred to writer threads via
ring buffers between threads.

Several writer work in parallel to store packets as files in LZ4 format. You can capture a
certain amount of heavy traffic by using much writer threads.

Fig. 2.8 shows an usecase of spp_pcap in which packets from phy:0 are captured by using
three writer threads.

Fig. 2.8: spp_pcap internal structure

2.5 Implementation

This section describes topics of implementation of SPP processes.

2.5. Implementation 7

Soft Patch Panel Documentation, Release 19.11

2.5.1 spp_nfv

spp_nfv is a DPDK secondary process and communicates with primary and other peer pro-
cesses via TCP sockets or shared memory. spp_nfv consists of several threads, main thread
for maanging behavior of spp_nfv and worker threads for packet forwarding.

As initialization of the process, it calls rte_eal_init(), then specific initialization functions
for resources of spp_nfv itself.

After initialization, main thread launches worker threads on each of given slave lcores with
rte_eal_remote_launch(). It means that spp_nfv requires two lcores at least. Main
thread starts to accept user command after all of worker threads are launched.

Initialization

In main funciton, spp_nfv calls rte_eal_init() first as other DPDK applications,
forward_array_init() and port_map_init() for initializing port forward array which
is a kind of forwarding table.

int
main(int argc, char *argv[])
{

....

ret = rte_eal_init(argc, argv);
if (ret < 0)

return -1;
....

/* initialize port forward array*/
forward_array_init();
port_map_init();
....

Port forward array is implemented as an array of port structure. It consists of RX, TX ports
and its forwarding functions, rte_rx_burst() and rte_tx_burst() actually. Each of ports
are identified with unique port ID. Worker thread iterates this array and forward packets from
RX port to TX port.

/* src/shared/common.h */

struct port {
uint16_t in_port_id;
uint16_t out_port_id;
uint16_t (*rx_func)(uint16_t, uint16_t, struct rte_mbuf **, uint16_t);
uint16_t (*tx_func)(uint16_t, uint16_t, struct rte_mbuf **, uint16_t);

};

Port map is another kind of structure for managing its type and statistics. Port type for indicating
PMD type, for example, ring, vhost or so. Statistics is used as a counter of packet forwarding.

/* src/shared/common.h */

struct port_map {
int id;
enum port_type port_type;
struct stats *stats;

(continues on next page)

2.5. Implementation 8

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

struct stats default_stats;
};

Final step of initialization is setting up memzone. In this step, spp_nfv just looks up memzone
of primary process as a secondary.

/* set up array for port data */
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {

mz = rte_memzone_lookup(MZ_PORT_INFO);
if (mz == NULL)

rte_exit(EXIT_FAILURE,
"Cannot get port info structure\n");

ports = mz->addr;

Launch Worker Threads

Worker threads are launched with rte_eal_remote_launch() from main thread.
RTE_LCORE_FOREACH_SLAVE is a macro for traversing slave lcores while incrementing
lcore_id and rte_eal_remote_launch() is a function for running a function on worker
thread.

lcore_id = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {

rte_eal_remote_launch(main_loop, NULL, lcore_id);
}

In this case, main_loop is a starting point for calling task of worker thread nfv_loop().

static int
main_loop(void *dummy __rte_unused)
{

nfv_loop();
return 0;

}

Parsing User Command

After all of worker threads are launched, main threads goes into while loop for waiting user
command from SPP controller via TCP connection. If receiving a user command, it simply
parses the command and make a response. It terminates the while loop if it receives exit
command.

while (on) {
ret = do_connection(&connected, &sock);
....
ret = do_receive(&connected, &sock, str);
....
flg_exit = parse_command(str);
....
ret = do_send(&connected, &sock, str);
....

}

2.5. Implementation 9

Soft Patch Panel Documentation, Release 19.11

parse_command() is a function for parsing user command as named. There are several
commnads for spp_nfv as described in Secondary Commands. Command from controller is
a simple plain text and action for the command is decided with the first token of the command.

static int
parse_command(char *str)
{

....

if (!strcmp(token_list[0], "status")) {
RTE_LOG(DEBUG, SPP_NFV, "status\n");
memset(str, '\0', MSG_SIZE);

....

} else if (!strcmp(token_list[0], "add")) {
RTE_LOG(DEBUG, SPP_NFV, "Received add command\n");
if (do_add(token_list[1]) < 0)

RTE_LOG(ERR, SPP_NFV, "Failed to do_add()\n");

} else if (!strcmp(token_list[0], "patch")) {
RTE_LOG(DEBUG, SPP_NFV, "patch\n");

....
}

For instance, if the first token is add, it calls do_add() with given tokens and adds port to the
process.

2.5.2 spp_vf

This section describes implementation of key features of spp_vf.

spp_vf consists of master thread and several worker threads, forwarder, classifier or
merger, as slaves. For classifying packets, spp_vf has a worker thread named classifier
and a table for registering MAC address entries.

Initialization

In master thread, data of classifier and VLAN features are initialized after rte_eal_init()
is called. Port capability is a set of data for describing VLAN features. Then, each of worker
threads are launched with rte_eal_remote_launch() on assigned lcores..

/* spp_vf.c */

ret = rte_eal_init(argc, argv);

/* skipping lines ... */

/* Start worker threads of classifier and forwarder */
unsigned int lcore_id = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {

rte_eal_remote_launch(slave_main, NULL, lcore_id);
}

2.5. Implementation 10

Soft Patch Panel Documentation, Release 19.11

Slave Main

Main function of worker thread is defined as slave_main() which is called from
rte_eal_remote_launch(). Behavior of worker thread is decided in while loop in this
function. If lcore status is not SPPWK_LCORE_RUNNING, worker thread does nothing. On the
other hand, it does packet forwarding with or without classifying. It classifies incoming packets
if component type is SPPWK_TYPE_CLS, or simply forwards packets.

/* spp_vf.c */

while ((status = spp_get_core_status(lcore_id)) !=
SPPWK_LCORE_REQ_STOP) {
if (status != SPPWK_LCORE_RUNNING)

continue;

/* skipping lines ... */

/* It is for processing multiple components. */
for (cnt = 0; cnt < core->num; cnt++) {
/* Component classification to call a function. */
if (spp_get_component_type(core->id[cnt]) ==

SPPWK_TYPE_CLS) {
/* Component type for classifier. */
ret = classify_packets(core->id[cnt]);
if (unlikely(ret != 0))

break;
} else {

/* Component type for forward or merge. */
ret = forward_packets(core->id[cnt]);
if (unlikely(ret != 0))

break;
}

}

Data structure of classifier

Classifier has a set of attributes for classification as struct mac_classifier, which consists
of a table of MAC addresses, number of classifying ports, indices of ports and default index of
port. Clasifier table is implemented as hash of struct rte_hash.

/* shared/secondary/spp_worker_th/vf_deps.h */

/* Classifier for MAC addresses. */
struct mac_classifier {

struct rte_hash *cls_tbl; /* Hash table for MAC classification. */
int nof_cls_ports; /* Num of ports classified validly. */
int cls_ports[RTE_MAX_ETHPORTS]; /* Ports for classification. */
int default_cls_idx; /* Default index for classification. */

};

Classifier itself is defined as a struct cls_comp_info. There are several attributes in this
struct including mac_classifier or cls_port_info or so. cls_port_info is for defining
a set of attributes of ports, such as interface type, device ID or packet data.

/* shared/secondary/spp_worker_th/vf_deps.h */

/* classifier component information */

(continues on next page)

2.5. Implementation 11

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

struct cls_comp_info {
char name[STR_LEN_NAME]; /* component name */
int mac_addr_entry; /* mac address entry flag */
struct mac_classifier *mac_clfs[NOF_VLAN]; /* classifiers per VLAN. */
int nof_tx_ports; /* Number of TX ports info entries. */
/* Classifier has one RX port and several TX ports. */
struct cls_port_info rx_port_i; /* RX port info classified. */
struct cls_port_info tx_ports_i[RTE_MAX_ETHPORTS]; /* TX info. */

};

/* Attirbutes of port for classification. */
struct cls_port_info {

enum port_type iface_type;
int iface_no; /* Index of ports handled by classifier. */
int iface_no_global; /* ID for interface generated by spp_vf */
uint16_t ethdev_port_id; /* Ethdev port ID. */
uint16_t nof_pkts; /* Number of packets in pkts[]. */
struct rte_mbuf *pkts[MAX_PKT_BURST]; /* packets to be classified. */

};

Classifying the packet

If component type is SPPWK_TYPE_CLS, worker thread behaves as a classifier, so compo-
nent calls classify_packets(). In this function, packets from RX port are received with
sppwk_eth_vlan_rx_burst() which is derived from rte_eth_rx_burst() for adding or
deleting VLAN tags. Received packets are classified with classify_packet().

/* classifier.c */

n_rx = sppwk_eth_vlan_rx_burst(clsd_data_rx->ethdev_port_id, 0,
rx_pkts, MAX_PKT_BURST);

/* skipping lines ... */

classify_packet(rx_pkts, n_rx, cmp_info, clsd_data_tx);

Packet processing in forwarder and merger

Configuration data for forwarder and merger is stored as structured tables forward_rxtx,
forward_path and forward_info. The forward_rxtx has two member variables for
expressing the port to be sent(tx) and to be receive(rx), forward_path has member variables
for expressing the data path. Like as mac_classifier, forward_info has two tables, one
is for updating by commands, the other is for looking up to process packets.

/* forwarder.c */
/* A set of port info of rx and tx */
struct forward_rxtx {

struct spp_port_info rx; /* rx port */
struct spp_port_info tx; /* tx port */

};

/* Information on the path used for forward. */
struct forward_path {

char name[STR_LEN_NAME]; /* Component name */
volatile enum sppwk_worker_type wk_type;

(continues on next page)

2.5. Implementation 12

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

int nof_rx; /* Number of RX ports */
int nof_tx; /* Number of TX ports */
struct forward_rxtx ports[RTE_MAX_ETHPORTS]; /* Set of RX and TX */

};

/* Information for forward. */
struct forward_info {

volatile int ref_index; /* index to reference area */
volatile int upd_index; /* index to update area */
struct forward_path path[SPP_INFO_AREA_MAX];

/* Information of data path */
};

L2 Multicast Support

spp_vf supports multicast for resolving ARP requests. It is implemented as
handle_l2multicast_packet() and called from classify_packet() for incoming mul-
ticast packets.

/* classify_packet() in classifier.c */

/* L2 multicast(include broadcast) ? */
if (unlikely(is_multicast_ether_addr(ð->d_addr))) {

RTE_LOG(DEBUG, SPP_CLASSIFIER_MAC,
"multicast mac address.\n");

handle_l2multicast_packet(rx_pkts[i],
classifier_info,
classified_data);

continue;
}

Packets are cloned with rte_mbuf_refcnt_update() for distributing multicast packets.

/* classifier.c */

handle_l2multicast_packet(struct rte_mbuf *pkt,
struct cls_comp_info *cmp_info,
struct cls_port_info *clsd_data)

{
int i;
struct mac_classifier *mac_cls;
uint16_t vid = get_vid(pkt);
int gen_def_clsd_idx = get_general_default_classified_index(cmp_info);
int n_act_clsd;

/* skipping lines... */

rte_mbuf_refcnt_update(pkt, (int16_t)(n_act_clsd - 1));

Two phase update for forwarding

Update of netowrk configuration in spp_vf is done in a short period of time, but not so short
considering the time scale of packet forwarding. It might forward packets before the updating is
completed possibly. To avoid such kind of situation, spp_vf has two phase update mechanism.
Status info is referred from forwarding process after the update is completed.

2.5. Implementation 13

Soft Patch Panel Documentation, Release 19.11

int
flush_cmd(void)
{

int ret;
int *p_change_comp;
struct sppwk_comp_info *p_comp_info;
struct cancel_backup_info *backup_info;

sppwk_get_mng_data(NULL, &p_comp_info, NULL, NULL, &p_change_comp,
&backup_info);

ret = update_port_info();
if (ret < SPPWK_RET_OK)

return ret;

update_lcore_info();

ret = update_comp_info(p_comp_info, p_change_comp);

backup_mng_info(backup_info);
return ret;

}

2.5.3 spp_mirror

This section describes implementation of spp_mirror. It consists of master thread and sev-
eral worker threads for duplicating packets.

Slave Main

Main function of worker thread is defined as slave_main() in which for duplicating packets
is mirror_proc() on each of lcores.

for (cnt = 0; cnt < core->num; cnt++) {

ret = mirror_proc(core->id[cnt]);
if (unlikely(ret != 0))

break;
}

Mirroring Packets

Worker thread receives and duplicate packets. There are two modes of copying packets,
shallowcopy and deepcopy. Deep copy is for duplicating whole of packet data, but less
performance than shallow copy. Shallow copy duplicates only packet header and body is not
shared among original packet and duplicated packet. So, changing packet data affects both of
original and copied packet.

You can configure using which of modes in Makefile. Default mode is shallowcopy. If you
change the mode to deepcopy, comment out this line of CFLAGS.

Default mode is shallow copy.
CFLAGS += -DSPP_MIRROR_SHALLOWCOPY

2.5. Implementation 14

Soft Patch Panel Documentation, Release 19.11

This code is a part of mirror_proc(). In this function, rte_pktmbuf_clone() is just called
if in shallow copy mode, or create a new packet with rte_pktmbuf_alloc() for duplicated
packet if in deep copy mode.

for (cnt = 0; cnt < nb_rx; cnt++) {
org_mbuf = bufs[cnt];
rte_prefetch0(rte_pktmbuf_mtod(org_mbuf, void *));

#ifdef SPP_MIRROR_SHALLOWCOPY
/* Shallow Copy */

copybufs[cnt] = rte_pktmbuf_clone(org_mbuf,
g_mirror_pool);

#else
struct rte_mbuf *mirror_mbuf = NULL;
struct rte_mbuf **mirror_mbufs = &mirror_mbuf;
struct rte_mbuf *copy_mbuf = NULL;
/* Deep Copy */
do {

copy_mbuf = rte_pktmbuf_alloc(g_mirror_pool);
if (unlikely(copy_mbuf == NULL)) {

rte_pktmbuf_free(mirror_mbuf);
mirror_mbuf = NULL;
RTE_LOG(INFO, MIRROR,

"copy mbuf alloc NG!\n");
break;

}

copy_mbuf->data_off = org_mbuf->data_off;
...
copy_mbuf->packet_type = org_mbuf->packet_type;

rte_memcpy(rte_pktmbuf_mtod(copy_mbuf, char *),
rte_pktmbuf_mtod(org_mbuf, char *),
org_mbuf->data_len);

*mirror_mbufs = copy_mbuf;
mirror_mbufs = ©_mbuf->next;

} while ((org_mbuf = org_mbuf->next) != NULL);
copybufs[cnt] = mirror_mbuf;

#endif /* SPP_MIRROR_SHALLOWCOPY */
}

if (cnt != 0)
nb_tx2 = spp_eth_tx_burst(tx->dpdk_port, 0,

copybufs, cnt);

2.5.4 spp_pcap

This section describes implementation of spp_pcap.

Slave Main

In slave_main(), it calls pcap_proc_receive() if thread type is receiver, or
pcap_proc_write() if the type is writer.

/* spp_pcap.c */

(continues on next page)

2.5. Implementation 15

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

while ((status = spp_get_core_status(lcore_id)) !=
SPP_CORE_STOP_REQUEST) {

if (pcap_info->type == TYPE_RECIVE)
ret = pcap_proc_receive(lcore_id);

else
ret = pcap_proc_write(lcore_id);

}
}

Receiving Pakcets

pcap_proc_receive() is for receiving packets with rte_eth_rx_burst and sending the
packets to the writer thread via ring memory by using rte_ring_enqueue_bulk().

/* spp_pcap.c */

rx = &g_pcap_option.port_cap;
nb_rx = rte_eth_rx_burst(rx->ethdev_port_id, 0, bufs, MAX_PCAP_BURST);

/* Forward to ring for writer thread */
nb_tx = rte_ring_enqueue_burst(write_ring, (void *)bufs, nb_rx, NULL);

Writing Packet

pcap_proc_write() is for capturing packets to a file. The captured file is compressed with
LZ4 which is a lossless compression algorithm and providing compression speed > 500 MB/s
per core.

nb_rx = rte_ring_dequeue_bulk(read_ring, (void *)bufs, MAX_PKT_BURST,
NULL);

for (buf = 0; buf < nb_rx; buf++) {
mbuf = bufs[buf];
rte_prefetch0(rte_pktmbuf_mtod(mbuf, void *));
if (compress_file_packet(&g_pcap_info[lcore_id], mbuf)

!= SPPWK_RET_OK) {
RTE_LOG(ERR, PCAP, "capture file write error: "

"%d (%s)\n", errno, strerror(errno));
ret = SPPWK_RET_NG;
info->status = SPP_CAPTURE_IDLE;
compress_file_operation(info, CLOSE_MODE);
break;

}
}
for (buf = nb_rx; buf < nb_rx; buf++)

rte_pktmbuf_free(bufs[buf]);

2.5. Implementation 16

https://github.com/lz4/lz4

CHAPTER 3

Getting Started Guide

3.1 Setup

This documentation is described for following distributions.

• Ubuntu 16.04 and 18.04

• CentOS 7.6 (not fully supported)

3.1.1 Reserving Hugepages

Hugepages should be enabled for running DPDK application. Hugepage support is to reserve
large amount size of pages, 2MB or 1GB per page, to less TLB (Translation Lookaside Buffers)
and to reduce cache miss. Less TLB means that it reduce the time for translating virtual
address to physical.

How to configure reserving hugepages is different between 2MB or 1GB. In general, 1GB is
better for getting high performance, but 2MB is easier for configuration than 1GB.

1GB Hugepage

For using 1GB page, hugepage setting is activated while booting system. It must be defined in
boot loader configuration, usually it is /etc/default/grub. Add an entry of configuration of
the size and the number of pages.

Here is an example for Ubuntu, and almost the same as CentOS. The points are that
hugepagesz is for the size and hugepages is for the number of pages. You can also configure
isolcpus in grub setting for improving performance as described in Performance Optimizing.

/etc/default/grub
GRUB_CMDLINE_LINUX="default_hugepagesz=1G hugepagesz=1G hugepages=8"

17

Soft Patch Panel Documentation, Release 19.11

For Ubuntu, you should run update-grub for updating /boot/grub/grub.cfg after editing
to update grub’s config file, or this configuration is not activated.

Ubuntu
$ sudo update-grub
Generating grub configuration file ...

Or for CentOS7, you use grub2-mkconfig instead of update-grub. In this case, you
should give the output file with -o option. The output path might be different, so you should
find your correct grub.cfg by yourself.

CentOS
$ sudo grub2-mkconfig -o /boot/efi/EFI/centos/grub.cfg

Note: 1GB hugepages might not be supported on your hardware. It depends on that CPUs
support 1GB pages or not. You can check it by referring /proc/cpuinfo. If it is supported,
you can find pdpe1gb in the flags attribute.

$ cat /proc/cpuinfo | grep pdpe1gb
flags : fpu vme ... pdpe1gb ...

2MB Hugepage

For using 2MB page, you can activate hugepages while booting or at anytime after system
is booted. Define hugepages setting in /etc/default/grub to activate it while booting, or
overwrite the number of 2MB hugepages as following.

$ echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

In this case, 1024 pages of 2MB, totally 2048 MB, are reserved.

3.1.2 Mount hugepages

Make the memory available for using hugepages from DPDK.

$ mkdir /mnt/huge
$ mount -t hugetlbfs nodev /mnt/huge

It is also available while booting by adding a configuration of mount point in /etc/fstab. The
mount point for 2MB or 1GB can be made permanently accross reboot. For 2MB, it is no need
to declare the size of hugepages explicity.

/etc/fstab
nodev /mnt/huge hugetlbfs defaults 0 0

For 1GB, the size of hugepage pagesize must be specified.

/etc/fstab
nodev /mnt/huge_1GB hugetlbfs pagesize=1GB 0 0

3.1. Setup 18

Soft Patch Panel Documentation, Release 19.11

3.1.3 Disable ASLR

SPP is a DPDK multi-process application and there are a number of limitations .

Address-Space Layout Randomization (ASLR) is a security feature for memory protection, but
may cause a failure of memory mapping while starting multi-process application as discussed
in dpdk-dev .

ASLR can be disabled by assigning kernel.randomize_va_space to 0, or be enabled by
assigning it to 2.

disable ASLR
$ sudo sysctl -w kernel.randomize_va_space=0

enable ASLR
$ sudo sysctl -w kernel.randomize_va_space=2

You can check the value as following.

$ sysctl -n kernel.randomize_va_space

3.1.4 Using Virtual Machine

SPP provides vhost interface for inter VM communication. You can use any of DPDK supported
hypervisors, but this document describes usecases of qemu and libvirt.

Server mode v.s. Client mode

For using vhost, vhost port should be created before VM is launched in server mode, or SPP
is launched in client mode to be able to create vhost port after VM is launched.

Client mode is optional and supported in qemu 2.7 or later. For using this mode, launch
secondary process with --vhost-client. Qemu creates socket file instead of secondary
process. It means that you can launch a VM before secondary process create vhost port.

Libvirt

If you use libvirt for managing virtual machines, you might need some additional configurations.

To have access to resources with your account, update and activate user and group parameters
in /etc/libvirt/qemu.conf. Here is an example.

/etc/libvirt/qemu.conf

user = "root"
group = "root"

For using hugepages with libvirt, change KVM_HUGEPAGES from 0 to 1 in /etc/default/
qemu-kvm.

/etc/default/qemu-kvm

KVM_HUGEPAGES=1

3.1. Setup 19

https://dpdk.org/doc/guides/prog_guide/multi_proc_support.html#multi-process-limitations
http://dpdk.org/ml/archives/dev/2014-September/005236.html

Soft Patch Panel Documentation, Release 19.11

Change grub config as similar to Reserving Hugepages. You can check hugepage settings as
following.

$ cat /proc/meminfo | grep -i huge
AnonHugePages: 2048 kB
HugePages_Total: 36 # /etc/default/grub
HugePages_Free: 36
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 1048576 kB # /etc/default/grub

$ mount | grep -i huge
cgroup on /sys/fs/cgroup/hugetlb type cgroup (rw,...,nsroot=/)
hugetlbfs on /dev/hugepages type hugetlbfs (rw,relatime)
hugetlbfs-kvm on /run/hugepages/kvm type hugetlbfs (rw,...,gid=117)
hugetlb on /run/lxcfs/controllers/hugetlb type cgroup (rw,...,nsroot=/)

Finally, you umount default hugepages.

$ sudo umount /dev/hugepages

Trouble Shooting

You might encounter a permission error while creating a resource, such as a socket file under
tmp/, because of AppArmor.

You can avoid this error by editing /etc/libvirt/qemu.conf.

Set security_driver to "none"
$sudo vi /etc/libvirt/qemu.conf
...
security_driver = "none"
...

Restart libvirtd to activate this configuration.

$sudo systemctl restart libvirtd.service

Or, you can also avoid by simply removing AppArmor itself.

$ sudo apt-get remove apparmor

If you use CentOS, confirm that SELinux doesn’t prevent for permission. SELinux is disabled
simply by changing the configuration to disabled.

/etc/selinux/config
SELINUX=disabled

Check your SELinux configuration.

$ getenforce
Disabled

3.1. Setup 20

Soft Patch Panel Documentation, Release 19.11

3.1.5 Python 2 or 3 ?

Without SPP container tools, Python2 is not supported anymore. SPP container will also be
updated to Python3.

3.1.6 Driver for Mellanox NIC

In case of using MLX5 NIC, you have to install driver. You can download driver from Mellanox’s
SW/Drivers <https://www.mellanox.com/page/mlnx_ofed_matrix?mtag=linux_sw_drivers>.
The following example assumes that MLNX_OFED_LINUX-4.7-1.0.0.1-ubuntu18.04-
x86_64.tgz is downloaded.

$cd MLNX_OFED_LINUX-4.7-1.0.0.1-ubuntu18.04-x86_64/
$sudo ./mlnxofedinstall --upstream-libs --dpdk --force

3.1.7 Reference

• [1] Use of Hugepages in the Linux Environment

• [2] Using Linux Core Isolation to Reduce Context Switches

• [3] Linux boot command line

3.2 Install DPDK and SPP

Before setting up SPP, you need to install DPDK. In this document, briefly described how to
install and setup DPDK. Refer to DPDK documentation for more details. For Linux, see Getting
Started Guide for Linux .

3.2.1 Required Packages

Installing packages for DPDK and SPP is almost the on Ubunu and CentOS, but names are
different for some packages.

Ubuntu

To compile DPDK, it is required to install following packages.

$ sudo apt install libnuma-dev \
libarchive-dev \
build-essential

You also need to install linux-headers of your kernel version.

$ sudo apt install linux-headers-$(uname -r)

Some of SPP secondary processes depend on other libraries and you fail to compile SPP
without installing them.

3.2. Install DPDK and SPP 21

http://dpdk.org/doc/guides/linux_gsg/sys_reqs.html#running-dpdk-applications
http://dpdk.org/doc/guides/linux_gsg/enable_func.html#using-linux-core-isolation-to-reduce-context-switches
http://dpdk.org/doc/guides/linux_gsg/nic_perf_intel_platform.html#linux-boot-command-line
https://dpdk.org/doc/guides/
http://www.dpdk.org/doc/guides/linux_gsg/index.html
http://www.dpdk.org/doc/guides/linux_gsg/index.html

Soft Patch Panel Documentation, Release 19.11

SPP provides libpcap-based PMD for dumping packet to a file or retrieve it from the
file. spp_nfv and spp_pcap use libpcap-dev for packet capture. spp_pcap uses
liblz4-dev and liblz4-tool to compress PCAP file.

$ sudo apt install libpcap-dev \
liblz4-dev \
liblz4-tool

text2pcap is also required for creating pcap file which is included in wireshark.

$ sudo apt install wireshark

CentOS

Before installing packages for DPDK, you should add IUS Community repositories with yum
command.

$ sudo yum install https://centos7.iuscommunity.org/ius-release.rpm

To compile DPDK, required to install following packages.

$ sudo yum install numactl-devel \
libarchive-devel \
kernel-headers \
kernel-devel

As same as Ubuntu, you should install additional packages because SPP provides libpcap-
based PMD for dumping packet to a file or retrieve it from the file. spp_nfv and spp_pcap
use libpcap-dev for packet capture. spp_pcap uses liblz4-dev and liblz4-tool to
compress PCAP file. text2pcap is also required for creating pcap file which is included in
wireshark.

$ sudo apt install libpcap-dev \
libpcap \
libpcap-devel \
lz4 \
lz4-devel \
wireshark \
wireshark-devel \
libX11-devel

3.2.2 DPDK

Clone repository and compile DPDK in any directory.

$ cd /path/to/any
$ git clone http://dpdk.org/git/dpdk

Installing on Ubuntu and CentOS are almost the same, but required packages are just bit
different.

PCAP is disabled by default in DPDK configuration. CONFIG_RTE_LIBRTE_PMD_PCAP and
CONFIG_RTE_PORT_PCAP defined in config file common_base should be changed to y to
enable PCAP.

3.2. Install DPDK and SPP 22

https://ius.io/GettingStarted/

Soft Patch Panel Documentation, Release 19.11

dpdk/config/common_base
CONFIG_RTE_LIBRTE_PMD_PCAP=y
...
CONFIG_RTE_PORT_PCAP=y

Compilation of igb_uio module is disabled by default in DPDK configuration.
CONFIG_RTE_EAL_IGB_UIO defined in config file common_base should be changed to
y to enable compilation of igb_uio.

dpdk/config/common_base
CONFIG_RTE_EAL_IGB_UIO=y

If you use MLX5 NIC, CONFIG_RTE_LIBRTE_MLX5_PMD defined in config file common_base
should be changed to y.

dpdk/config/common_base
CONFIG_RTE_LIBRTE_MLX5_PMD=y

Compile DPDK with target environment.

$ cd dpdk
$ export RTE_SDK=$(pwd)
$ export RTE_TARGET=x86_64-native-linux-gcc # depends on your env
$ make install T=$RTE_TARGET

3.2.3 Pyhton

Python3 and pip3 are also required because SPP controller is implemented in Pyhton3. Re-
quired packages can be installed from requirements.txt.

Ubuntu
$ sudo apt install python3 \

python3-pip

For CentOS, you need to specify minor version of python3. Here is an example of installing
python3.6.

CentOS
$ sudo yum install python36 \

python36-pip

SPP provides requirements.txt for installing required packages of Python3. You might fail
to run pip3 without sudo on some environments.

$ pip3 install -r requirements.txt

For some environments, pip3 might install packages under your home directory $HOME/.
local/bin and you should add it to $PATH environment variable.

3.2.4 SPP

Clone SPP repository and compile it in any directory.

3.2. Install DPDK and SPP 23

Soft Patch Panel Documentation, Release 19.11

$ cd /path/to/any
$ git clone http://dpdk.org/git/apps/spp
$ cd spp
$ make # Confirm that $RTE_SDK and $RTE_TARGET are set

If you use spp_mirror in deep copy mode, which is used for cloning whole of packet data
for modification, you should change configuration of copy mode in Makefile of spp_mirror
before. It is for copying full payload into a new mbuf. Default mode is shallow copy.

src/mirror/Makefile
#CFLAGS += -Dspp_mirror_SHALLOWCOPY

Note: Before run make command, you might need to consider if using deep copy for cloning
packets in spp_mirror. Comparing with shallow copy, it clones entire packet payload into a
new mbuf and it is modifiable, but lower performance. Which of copy mode should be chosen
depends on your usage.

3.2.5 Binding Network Ports to DPDK

Network ports must be bound to DPDK with a UIO (Userspace IO) driver. UIO driver is for
mapping device memory to userspace and registering interrupts.

UIO Drivers

You usually use the standard uio_pci_generic for many use cases or vfio-pci for more
robust and secure cases. Both of drivers are included by default in modern Linux kernel.

Activate uio_pci_generic
$ sudo modprobe uio_pci_generic

or vfio-pci
$ sudo modprobe vfio-pci

You can also use kmod included in DPDK instead of uio_pci_generic or vfio-pci.

$ sudo modprobe uio
$ sudo insmod kmod/igb_uio.ko

Binding Network Ports

Once UIO driver is activated, bind network ports with the driver. DPDK provides usertools/
dpdk-devbind.py for managing devices.

Find ports for binding to DPDK by running the tool with -s option.

$ $RTE_SDK/usertools/dpdk-devbind.py --status

Network devices using DPDK-compatible driver
==
<none>

(continues on next page)

3.2. Install DPDK and SPP 24

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

Network devices using kernel driver
===================================
0000:29:00.0 '82571EB ... 10bc' if=enp41s0f0 drv=e1000e unused=
0000:29:00.1 '82571EB ... 10bc' if=enp41s0f1 drv=e1000e unused=
0000:2a:00.0 '82571EB ... 10bc' if=enp42s0f0 drv=e1000e unused=
0000:2a:00.1 '82571EB ... 10bc' if=enp42s0f1 drv=e1000e unused=

Other Network devices
=====================
<none>
....

You can find network ports are bound to kernel driver and not to DPDK. To bind a port to DPDK,
run dpdk-devbind.py with specifying a driver and a device ID. Device ID is a PCI address
of the device or more friendly style like eth0 found by ifconfig or ip command..

Bind a port with 2a:00.0 (PCI address)
./usertools/dpdk-devbind.py --bind=uio_pci_generic 2a:00.0

or eth0
./usertools/dpdk-devbind.py --bind=uio_pci_generic eth0

After binding two ports, you can find it is under the DPDK driver and cannot find it by using
ifconfig or ip.

$ $RTE_SDK/usertools/dpdk-devbind.py -s

Network devices using DPDK-compatible driver
==
0000:2a:00.0 '82571EB ... 10bc' drv=uio_pci_generic unused=vfio-pci
0000:2a:00.1 '82571EB ... 10bc' drv=uio_pci_generic unused=vfio-pci

Network devices using kernel driver
===================================
0000:29:00.0 '...' if=enp41s0f0 drv=e1000e unused=vfio-pci,uio_pci_generic
0000:29:00.1 '...' if=enp41s0f1 drv=e1000e unused=vfio-pci,uio_pci_generic

Other Network devices
=====================
<none>
....

3.2.6 Confirm DPDK is setup properly

For testing, you can confirm if you are ready to use DPDK by running DPDK’s sample appli-
cation. l2fwd is good example to confirm it before SPP because it is very similar to SPP’s
worker process for forwarding.

$ cd $RTE_SDK/examples/l2fwd
$ make

CC main.o
LD l2fwd
INSTALL-APP l2fwd
INSTALL-MAP l2fwd.map

In this case, run this application simply with just two options while DPDK has many kinds of

3.2. Install DPDK and SPP 25

Soft Patch Panel Documentation, Release 19.11

options.

• -l: core list

• -p: port mask

$ sudo ./build/app/l2fwd \
-l 1-2 \
-- -p 0x3

It must be separated with -- to specify which option is for EAL or application. Refer to L2
Forwarding Sample Application for more details.

3.2.7 Build Documentation

This documentation is able to be built as HTML and PDF formats from make command. Before
compiling the documentation, you need to install some of packages required to compile.

For HTML documentation, install sphinx and additional theme.

$ pip3 install sphinx \
sphinx-rtd-theme

For PDF, inkscape and latex packages are required.

Ubuntu
$ sudo apt install inkscape \

texlive-latex-extra \
texlive-latex-recommended

CentOS
$ sudo yum install inkscape \

texlive-latex

You might also need to install latexmk in addition to if you use Ubuntu 18.04 LTS.

$ sudo apt install latexmk

HTML documentation is compiled by running make with doc-html. This command launch
sphinx for compiling HTML documents. Compiled HTML files are created in docs/guides/
_build/html/ and You can find the top page index.html in the directory.

$ make doc-html

PDF documentation is compiled with doc-pdf which runs latex for. Compiled PDF file is
created as docs/guides/_build/html/SoftPatchPanel.pdf.

$ make doc-pdf

You can also compile both of HTML and PDF documentations with doc or doc-all.

$ make doc
or
$ make doc-all

3.2. Install DPDK and SPP 26

https://dpdk.org/doc/guides/sample_app_ug/l2_forward_real_virtual.html
https://dpdk.org/doc/guides/sample_app_ug/l2_forward_real_virtual.html

Soft Patch Panel Documentation, Release 19.11

Note: For CentOS, compilation PDF document is not supported.

3.3 How to Use

As described in Design, SPP consists of primary process for managing resources, secondary
processes for forwarding packet, and SPP controller to accept user commands and send it to
SPP processes.

You should keep in mind the order of launching processes if you do it manually, or you can use
startup script. This start script is for launching spp-ctl, spp_primary and SPP CLI.

Before starting, you should define environmental variable SPP_FILE_PREFIX for using the
same prefix among SPP processes. --file-prefix is an EAL option for using a different
shared data file prefix for a DPDK process.

$ export SPP_FILE_PREFIX=spp

This option is used for running several DPDK processes because it is not allowed different
processes to have the same name of share data file, although each process of multi-process
application should have the same prefix on the contrary. Even if you do not run several DPDK
applications, you do not need to define actually. However, it is a good practice because SPP is
used for connecting DPDK applications in actual usecases.

3.3.1 Quick Start

Run bin/start.sh with configuration file bin/config.sh. However, at the first time you
run the script, it is failed because this configration file does not exist. It create the config from
template bin/sample/config.sh and asks you to edit this file. All of options for launching
the processes are defined in the configuration file.

Edit the config file before run bin/start.sh again. It is expected you have two physical ports
on your server, but it is configurable. You can use virtual ports instead of physical. The number
of ports is defined as PRI_PORTMASK=0x03 as default. If you do not have physical ports and
use two memif ports instead of physical, uncomment PRI_MEMIF_VDEVS=(0 1). You can
also use several types of port at once.

spp_primary options
...
PRI_PORTMASK=0x03 # total num of ports of spp_primary.

Vdevs of spp_primary
#PRI_MEMIF_VDEVS=(0 1) # IDs of `net_memif`
#PRI_VHOST_VDEVS=(11 12) # IDs of `eth_vhost`
...

After that, you can run the startup script again for launching processes.

launch with default URL http://127.0.0.1:7777
$ bin/start.sh
Start spp-ctl
Start spp_primary

(continues on next page)

3.3. How to Use 27

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

Waiting for spp_primary is ready OK! (8.5[sec])
Welcome to the SPP CLI. Type `help` or `?` to list commands.

spp >

Check status of spp_primary because it takes several seconds to be ready. Confirm that the
status is running.

spp > status
- spp-ctl:

- address: 127.0.0.1:7777
- primary:

- status: running
- secondary:

- processes:

Now you are ready to launch secondary processes from pri; launch command, or another
terminal. Here is an example for launching spp_nfv with options from pri; launch. Log
file of this process is created as log/spp_nfv1.log.

spp > pri; launch nfv 1 -l 1,2 -m 512 --file-prefix spp -- -n 1 -s ...

This launch command supports TAB completion. Parameters for spp_nfv are completed
after secondary ID 1.

You might notice --file-prefix spp which should be the same value among primary and
secondary processes. SPP CLI expects that this value can be referred as environmental vari-
able SPP_FILE_PREFIX, and spp_primary is launched with the same --file-prefix spp.
If you run SPP from bin/start.sh, you do no need to define the variable by yourself because
it is defined in bin/config.sh so that spp_primary is launched with the prefix.

spp > pri; launch nfv 1

Press TAB
spp > pri; launch nfv 1 -l 1,2 -m 512 --file-prefix spp -- -n 1 -s ...

It is same as following options launching from terminal.

$ sudo ./src/nfv/x86_64-native-linux-gcc/spp_nfv \
-l 1,2 -n 4 -m 512 \
--proc-type secondary \
--file-prefix spp \
-- \
-n 1 \
-s 127.0.0.1:6666

Parameters for completion are defined in SPP CLI, and you can find parameters with config
command.

spp > config
- max_secondary: "16" # The maximum number of secondary processes
- prompt: "spp > " # Command prompt
- topo_size: "60%" # Percentage or ratio of topo
- sec_mem: "-m 512" # Mem size
...

You can launch consequence secondary processes from CLI for your usage. If you just patch

3.3. How to Use 28

Soft Patch Panel Documentation, Release 19.11

two DPDK applications on host, it is enough to use one spp_nfv, or use spp_vf if you need
to classify packets.

spp > pri; launch nfv 2 -l 1,3 -m 512 --file-prefix spp -- -n 2 -s ...
spp > pri; launch vf 3 -l 1,4,5,6 -m 512 --file-prefix spp -- -n 3 -s ...
...

If you launch processes by yourself, spp_primary must be launched before secondary pro-
cesses. spp-ctl need to be launched before SPP CLI, but no need to be launched before
other processes. SPP CLI is launched from spp.py. If spp-ctl is not running after primary
and secondary processes are launched, processes wait spp-ctl is launched.

In general, spp-ctl should be launched first, then SPP CLI and spp_primary in each of
terminals without running as background process. After spp_primary, you launch secondary
processes for your usage.

In the rest of this chapter is for explaining how to launch each of processes options and usages
for the all of processes. How to connect to VMs is also described in this chapter.

How to use of these secondary processes is described as usecases in the next chapter.

3.3.2 SPP Controller

SPP Controller consists of spp-ctl and SPP CLI.

spp-ctl

spp-ctl is a HTTP server for REST APIs for managing SPP processes. In default, it is
accessed with URL http://127.0.0.1:7777 or http://localhost:7777. spp-ctl
shows no messages at first after launched, but shows log messages for events such as receiv-
ing a request or terminating a process.

terminal 1
$ cd /path/to/spp
$ python3 src/spp-ctl/spp-ctl

It has a option -b for binding address explicitly to be accessed from other than default, 127.
0.0.1 or localhost. If you deploy SPP on multiple nodes, you might need to use -b option
it to be accessed from other processes running on other than local node.

launch with URL http://192.168.1.100:7777
$ python3 src/spp-ctl/spp-ctl -b 192.168.1.100

spp-ctl is the most important process in SPP. For some usecases, you might better to man-
age this process with systemd. Here is a simple example of service file for systemd.

[Unit]
Description = SPP Controller

[Service]
ExecStart = /usr/bin/python3 /path/to/spp/src/spp-ctl/spp-ctl
User = root

All of options can be referred with help option -h.

3.3. How to Use 29

Soft Patch Panel Documentation, Release 19.11

$ python3 ./src/spp-ctl/spp-ctl -h
usage: spp-ctl [-h] [-b BIND_ADDR] [-p PRI_PORT]

[-s SEC_PORT] [-a API_PORT]

SPP Controller

optional arguments:
-h, --help show this help message and exit
-b BIND_ADDR, --bind-addr BIND_ADDR

bind address, default=localhost
-p PRI_PORT primary port, default=5555
-s SEC_PORT secondary port, default=6666
-a API_PORT web api port, default=7777

SPP CLI

If spp-ctl is launched, go to the next terminal and launch SPP CLI.

terminal 2
$ cd /path/to/spp
$ python3 src/spp.py
Welcome to the spp. Type help or ? to list commands.

spp >

If you launched spp-ctl with -b option, you also need to use the same option for spp.py, or
failed to connect and to launch.

terminal 2
bind to spp-ctl on http://192.168.1.100:7777
$ python3 src/spp.py -b 192.168.1.100
Welcome to the spp. Type help or ? to list commands.

spp >

One of the typical usecase of this option is to deploy multiple SPP nodes. Fig. 3.1 is an
exmaple of multiple nodes case. There are three nodes on each of which spp-ctl is running
for accepting requests for SPP. These spp-ctl processes are controlled from spp.py on
host1 and all of paths are configured across the nodes. It is also able to be configured between
hosts by changing soure or destination of phy ports.

Fig. 3.1: Multiple SPP nodes

Launch SPP CLI with three entries of binding addresses with -b option for specifying spp-ctl.

Launch SPP CLI with three nodes
$ python3 src/spp.py -b 192.168.11.101 \

-b 192.168.11.102 \
-b 192.168.11.103 \

You can also add nodes after SPP CLI is launched.

Launch SPP CLI with one node
$ python3 src/spp.py -b 192.168.11.101
Welcome to the SPP CLI. Type `help` or `?` to list commands.

(continues on next page)

3.3. How to Use 30

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

Add the rest of nodes after
spp > server add 192.168.11.102
Registered spp-ctl "192.168.11.102:7777".
spp > server add 192.168.11.103
Registered spp-ctl "192.168.11.103:7777".

You find the host under the management of SPP CLI and switch with server command.

spp > server list
1: 192.168.1.101:7777 *
2: 192.168.1.102:7777
3: 192.168.1.103:7777

To change the server, add an index number after server.

Launch SPP CLI
spp > server 3
Switch spp-ctl to "3: 192.168.1.103:7777".

All of options can be referred with help option -h.

$ python3 src/spp.py -h
usage: spp.py [-h] [-b BIND_ADDR] [--wait-pri] [--config CONFIG]

SPP Controller

optional arguments:
-h, --help show this help message and exit
-b BIND_ADDR, --bind-addr BIND_ADDR

bind address, default=127.0.0.1:7777
--wait-pri Wait for spp_primary is launched
--config CONFIG Config file path

All of SPP CLI commands are described in SPP Commands.

Default Configuration

SPP CLI imports several params from configuration file while launching. Some of behaviours of
SPP CLI depends on the params. The default configuration is defined in src/controller/
config/default.yml. You can change this params by editing the config file, or from
config command after SPP CLI is launched.

All of config params are referred by config command.

show list of config
spp > config
- max_secondary: "16" # The maximum number of secondary processes
- sec_nfv_nof_lcores: "1" # Default num of lcores for workers of spp_nfv
....

To change the config, set a value for the param. Here is an example for changing command
prompt.

set prompt to "$ spp "
spp > config prompt "$ spp "

(continues on next page)

3.3. How to Use 31

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

Set prompt: "$ spp "
$ spp

3.3.3 SPP Primary

SPP primary is a resource manager and has a responsibility for initializing EAL for secondary
processes. It should be launched before secondary.

To launch SPP primary, run spp_primary with specific options.

terminal 3
$ sudo ./src/primary/x86_64-native-linux-gcc/spp_primary \

-l 0 -n 4 \
--socket-mem 512,512 \
--huge-dir /dev/hugepages \
--proc-type primary \
--file-prefix $SPP_FILE_PREFIX \
--base-virtaddr 0x100000000
-- \
-p 0x03 \
-n 10 \
-s 192.168.1.100:5555

SPP primary takes EAL options and application specific options.

Core list option -l is for assigining cores and SPP primary requires just one core. You can
use core mask option -c instead of -l. For memory, this example is for reserving 512 MB on
each of two NUMA nodes hardware, so you use -m 1024 simply, or --socket-mem 1024,0
if you run the process on single NUMA node.

Note: If you use DPDK v18.08 or before, you should consider give --base-virtaddr with
4 GiB or higher value because a secondary process is accidentally failed to mmap while init
memory. The reason of the failure is secondary process tries to reserve the region which is
already used by some of thread of primary.

Failed to secondary
EAL: Could not mmap 17179869184 ... - please use '--base-virtaddr' option

--base-virtaddr is to decide base address explicitly to avoid this overlapping. 4 GiB
0x100000000 is enough for the purpose.

If you use DPDK v18.11 or later, --base-virtaddr 0x100000000 is enabled in default.
You need to use this option only for changing the default value.

If spp_primary is launched with two or more lcores, forwarder or monitor is activated. The
default is forwarder and monitor is optional in this case. If you use monitor thread, additional
option --disp-stat is required. Here is an example for launching spp_primary with moni-
tor thread.

terminal 3
$ sudo ./src/primary/x86_64-native-linux-gcc/spp_primary \

-l 0-1 -n 4 \ # two lcores
--socket-mem 512,512 \

(continues on next page)

3.3. How to Use 32

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

--huge-dir /dev/hugepages \
--proc-type primary \
--file-prefix $SPP_FILE_PREFIX \
--base-virtaddr 0x100000000
-- \
-p 0x03 \
-n 10 \
-s 192.168.1.100:5555
--disp-stats

Primary process sets up physical ports of given port mask with -p option and ring ports of the
number of -n option. Ports of -p option is for accepting incomming packets and -n option is
for inter-process packet forwarding. You can also add ports initialized with --vdev option to
physical ports. However, ports added with --vdev cannot referred from secondary processes.

terminal 3
$ sudo ./src/primary/x86_64-native-linux-gcc/spp_primary \

-l 0 -n 4 \
--socket-mem 512,512 \
--huge-dir=/dev/hugepages \
--vdev eth_vhost1,iface=/tmp/sock1 # used as 1st phy port
--vdev eth_vhost2,iface=/tmp/sock2 # used as 2nd phy port
--proc-type=primary \
--file-prefix $SPP_FILE_PREFIX \
--base-virtaddr 0x100000000
-- \
-p 0x03 \
-n 10 \
-s 192.168.1.100:5555

In case of using MLX5 supported NIC, you must add dv_flow_en=1 with white list option.

terminal 3
$ sudo ./src/primary/x86_64-native-linux-gcc/spp_primary \

-l 0 -n 4 \
-w 0000:03:00.0,dv_flow_en=1 \
-w 0000:04:00.0,dv_flow_en=1 \
-w 0000:05:00.0 \
--socket-mem 512,512 \
--huge-dir /dev/hugepages \
--proc-type primary \
--base-virtaddr 0x100000000
-- \
-p 0x03 \
-n 10 \
-s 192.168.1.100:5555

• EAL options:

– -l: core list

– --socket-mem: Memory size on each of NUMA nodes.

– --huge-dir: Path of hugepage dir.

– --proc-type: Process type.

– --base-virtaddr: Specify base virtual address.

– --disp-stats: Show statistics periodically.

3.3. How to Use 33

Soft Patch Panel Documentation, Release 19.11

• Application options:

– -p: Port mask.

– -n: Number of ring PMD.

– -s: IP address of controller and port prepared for primary.

3.3.4 SPP Secondary

Secondary process behaves as a client of primary process and a worker for doing tasks for
packet processing. There are several kinds of secondary process, for example, simply for-
warding between ports, classsifying packets by referring its header or duplicate packets for
redundancy.

spp_nfv

Run spp_nfv with options which simply forward packets as similar as l2fwd.

terminal 4
$ cd /path/to/spp
$ sudo ./src/nfv/x86_64-native-linux-gcc/spp_nfv \

-l 2-3 -n 4 \
--proc-type secondary \
--file-prefix $SPP_FILE_PREFIX \
-- \
-n 1 \
-s 192.168.1.100:6666

EAL options are the same as primary process. Here is a list of application options of spp_nfv.

• -n: Secondary ID.

• -s: IP address and secondary port of spp-ctl.

• --vhost-client: Enable vhost-user client mode.

Secondary ID is used to identify for sending messages and must be unique among all of
secondaries. If you attempt to launch a secondary process with the same ID, it is failed.

If --vhost-client option is specified, then vhost-user act as the client, otherwise the
server. For reconnect feature from SPP to VM, --vhost-client option can be used. This
reconnect features requires QEMU 2.7 (or later). See also Vhost Sample Application.

spp_vf

spp_vf is a kind of secondary process for classify or merge packets.

$ sudo ./src/vf/x86_64-native-linux-gcc/spp_vf \
-l 2-13 -n 4 \
--proc-type secondary \
--file-prefix $SPP_FILE_PREFIX \
-- \
--client-id 1 \
-s 192.168.1.100:6666 \
--vhost-client

3.3. How to Use 34

http://dpdk.org/doc/guides/sample_app_ug/vhost.html

Soft Patch Panel Documentation, Release 19.11

EAL options are the same as primary process. Here is a list of application options of spp_vf.

• --client-id: Client ID unique among secondary processes.

• -s: IPv4 address and secondary port of spp-ctl.

• --vhost-client: Enable vhost-user client mode.

spp_mirror

spp_mirror is a kind of secondary process for duplicating packets, and options are same as
spp_vf.

$ sudo ./src/mirror/x86_64-native-linux-gcc/spp_mirror \
-l 2,3 -n 4 \
--proc-type secondary \
--file-prefix $SPP_FILE_PREFIX \
-- \
--client-id 1 \
-s 192.168.1.100:6666 \
--vhost-client

EAL options are the same as primary process. Here is a list of application options of
spp_mirror.

• --client-id: Client ID unique among secondary processes.

• -s: IPv4 address and secondary port of spp-ctl.

• --vhost-client: Enable vhost-user client mode.

spp_pcap

Other than PCAP feature implemented as pcap port in spp_nfv, SPP provides spp_pcap for
capturing comparatively heavy traffic.

$ sudo ./src/pcap/x86_64-native-linux-gcc/spp_pcap \
-l 2-5 -n 4 \
--proc-type secondary \
--file-prefix $SPP_FILE_PREFIX \
-- \
--client-id 1 \
-s 192.168.1.100:6666 \
-c phy:0 \
--out-dir /path/to/dir \
--fsize 107374182

EAL options are the same as primary process. Here is a list of application options of
spp_pcap.

• --client-id: Client ID unique among secondary processes.

• -s: IPv4 address and secondary port of spp-ctl.

• -c: Captured port. Only phy and ring are supported.

• --out-dir: Optional. Path of dir for captured file. Default is /tmp.

• --fsize: Optional. Maximum size of a capture file. Default is 1GiB.

3.3. How to Use 35

Soft Patch Panel Documentation, Release 19.11

Captured file of LZ4 is generated in /tmp by default. The name of file is consists of timestamp,
resource ID of captured port, ID of writer threads and sequential number. Timestamp is de-
cided when capturing is started and formatted as YYYYMMDDhhmmss. Both of writer thread
ID and sequential number are started from 1. Sequential number is required for the case if
the size of captured file is reached to the maximum and another file is generated to continue
capturing.

This is an example of captured file. It consists of timestamp, 20190214154925, port phy0,
thread ID 1 and sequential number 1.

/tmp/spp_pcap.20190214154925.phy0.1.1.pcap.lz4

spp_pcap also generates temporary files which are owned by each of writer threads until
capturing is finished or the size of captured file is reached to the maximum. This temporary file
has additional extension tmp at the end of file name.

/tmp/spp_pcap.20190214154925.phy0.1.1.pcap.lz4.tmp

Launch from SPP CLI

You can launch SPP secondary processes from SPP CLI wihtout openning other terminals.
pri; launch command is for any of secondary processes with specific options. It takes
secondary type, ID and options of EAL and application itself as similar to launching from ter-
minal. Here is an example of launching spp_nfv. You notice that there is no --proc-type
secondary which should be required for secondary. It is added to the options by SPP CLI
before launching the process.

terminal 2
launch spp_nfv with sec ID 2
spp > pri; launch nfv 2 -l 1,2 -m 512 -- -n 2 -s 192.168.1.100:6666
Send request to launch nfv:2.

After running this command, you can find nfv:2 is launched successfully.

terminal 2
spp > status
- spp-ctl:

- address: 192.168.1.100:7777
- primary:

- status: running
- secondary:

- processes:
1: nfv:2

Instead of displaying log messages in terminal, it outputs the messages in a log file. All of
log files of secondary processes launched with pri are located in log/ directory under the
project root. The name of log file is found log/spp_nfv-2.log.

terminal 5
$ tail -f log/spp_nfv-2.log
SPP_NFV: Used lcores: 1 2
SPP_NFV: entering main loop on lcore 2
SPP_NFV: My ID 2 start handling message
SPP_NFV: [Press Ctrl-C to quit ...]
SPP_NFV: Creating socket...

(continues on next page)

3.3. How to Use 36

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

SPP_NFV: Trying to connect ... socket 24
SPP_NFV: Connected
SPP_NFV: Received string: _get_client_id
SPP_NFV: token 0 = _get_client_id
SPP_NFV: To Server: {"results":[{"result":"success"}],"client_id":2, ...

Launch SPP on VM

To communicate DPDK application running on a VM, it is required to create a virtual device
for the VM. In this instruction, launch a VM with qemu command and create vhost-user and
virtio-net-pci devices on the VM.

Before launching VM, you need to prepare a socket file for creating vhost-user device. Run
add command with resource UID vhost:0 to create socket file.

terminal 2
spp > nfv 1; add vhost:0

In this example, it creates socket file with index 0 from spp_nfv of ID 1. Socket file is created
as /tmp/sock0. It is used as a qemu option to add vhost interface.

Launch VM with qemu-system-x86_64 for x86 64bit architecture. Qemu takes many options
for defining resources including virtual devices. You cannot use this example as it is because
some options are depend on your environment. You should specify disk image with -hda,
sixth option in this example, and qemu-ifup script for assigning an IP address for the VM to
be able to access as 12th line.

terminal 5
$ sudo qemu-system-x86_64 \

-cpu host \
-enable-kvm \
-numa node,memdev=mem \
-mem-prealloc \
-hda /path/to/image.qcow2 \
-m 4096 \
-smp cores=4,threads=1,sockets=1 \
-object \
memory-backend-file,id=mem,size=4096M,mem-path=/dev/hugepages,share=on \
-device e1000,netdev=net0,mac=00:AD:BE:B3:11:00 \
-netdev tap,id=net0,ifname=net0,script=/path/to/qemu-ifup \
-nographic \
-chardev socket,id=chr0,path=/tmp/sock0 \ # /tmp/sock0
-netdev vhost-user,id=net1,chardev=chr0,vhostforce \
-device virtio-net-pci,netdev=net1,mac=00:AD:BE:B4:11:00 \
-monitor telnet::44911,server,nowait

This VM has two network interfaces. -device e1000 is a management network port which
requires qemu-ifup to activate while launching. Management network port is used for lo-
gin and setup the VM. -device virtio-net-pci is created for SPP or DPDK application
running on the VM.

vhost-user is a backend of virtio-net-pci which requires a socket file /tmp/sock0
created from secondary with -chardev option.

For other options, please refer to QEMU User Documentation.

3.3. How to Use 37

https://qemu.weilnetz.de/doc/qemu-doc.html

Soft Patch Panel Documentation, Release 19.11

Note: In general, you need to prepare several qemu images for launcing several VMs, but
installing DPDK and SPP for several images is bother and time consuming.

You can shortcut this tasks by creating a template image and copy it to the VMs. It is just one
time for installing for template.

After VM is booted, you install DPDK and SPP in the VM as in the host. IP address of the VM
is assigned while it is created and you can find the address in a file generated from libvirt if you
use Ubuntu.

terminal 5
$ cat /var/lib/libvirt/dnsmasq/virbr0.status
[

{
"ip-address": "192.168.122.100",
...

Login VM, install DPDK and SPP
$ ssh user@192.168.122.100
...

It is recommended to configure /etc/default/grub for hugepages and reboot the VM after
installation.

Finally, login to the VM, bind ports to DPDK and launch spp-ctl and spp_primamry. You
should add -b option to be accessed from SPP CLI on host.

terminal 5
$ ssh user@192.168.122.100
$ cd /path/to/spp
$ python3 src/spp-ctl/spp-ctl -b 192.168.122.100
...

Confirm that virtio interfaces are under the management of DPDK before launching DPDK
processes.

terminal 6
$ ssh user@192.168.122.100
$ cd /path/to/spp
$ sudo ./src/primary/x86_64-native-linux-gcc/spp_primary \

-l 1 -n 4 \
-m 1024 \
--huge-dir=/dev/hugepages \
--proc-type=primary \
--base-virtaddr 0x100000000
--file-prefix $SPP_FILE_PREFIX \
-- \
-p 0x03 \
-n 6 \
-s 192.168.122.100:5555

You can configure SPP running on the VM from SPP CLI. Use server command to switch
node under the management.

terminal 2
show list of spp-ctl nodes
spp > server

(continues on next page)

3.3. How to Use 38

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

1: 192.168.1.100:7777 *
2: 192.168.122.100:7777

change node under the management
spp > server 2
Switch spp-ctl to "2: 192.168.122.100:7777".

confirm node is switched
spp > server
1: 192.168.1.100:7777
2: 192.168.122.100:7777 *

configure SPP on VM
spp > status
...

Now, you are ready to setup your network environment for DPDK and non-DPDK applications
with SPP. SPP enables users to configure service function chaining between applications run-
ning on host and VMs. Usecases of network configuration are explained in the next chapter.

Using virsh

First of all, please check version of qemu.

$ qemu-system-x86_64 --version

You should install qemu 2.7 or higher for using vhost-user client mode. Refer instruction to
install.

virsh is a command line interface that can be used to create, destroy, stop start and edit VMs
and configure.

You also need to install following packages to run virt-install.

• libvirt-bin

• virtinst

• bridge-utils

virt-install

Install OS image with virt-install command. --location is a URL of installer. Use
Ubuntu 16.04 for amd64 in this case.

http://archive.ubuntu.com/ubuntu/dists/xenial/main/installer-amd64/

This is an example of virt-install.

virt-install \
--name VM_NAME \
--ram 4096 \
--disk path=/var/lib/libvirt/images/VM_NAME.img,size=30 \
--vcpus 4 \
--os-type linux \

(continues on next page)

3.3. How to Use 39

https://wiki.qemu.org/index.php/Hosts/Linux

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

--os-variant ubuntu16.04 \
--network network=default \
--graphics none \
--console pty,target_type=serial \
--location 'http://archive.ubuntu.com/ubuntu/dists/xenial/main/...'
--extra-args 'console=ttyS0,115200n8 serial'

You might need to enable serial console as following.

$sudo systemctl enable serial-getty@ttyS0.service
$sudo systemctl start serial-getty@ttyS0.service

Edit Config

Edit configuration of VM with virsh command. The name of VMs are found from virsh list.

Find the name of VM
$ sudo virsh list --all

$ sudo virsh edit VM_NAME

You need to define namespace qemu to use tags such as <qemu:commandline>. In
libvirt, <qemu:commandline> tag is supported to utilize qemu specific features. In this
example configuration of hugepage and/or network device is done via modifying domain XML
file. Please see details in libvirt document.

xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'

In addition, you need to add attributes for specific resources for DPDK and SPP.

• <memoryBacking>

• <qemu:commandline>

Take care about the index numbers of devices should be the same value such as chr0 or
sock0 in virtio-net-pci device. This index is referred as ID of vhost port from SPP. MAC
address defined in the attribute is used while registering destinations for classifier’s table.

<qemu:arg value='virtio-net-pci,netdev=vhost-net0,mac=52:54:00:12:34:56'/>

Here is an example of XML config for using with SPP. The following example is just excerpt
from complete sample. The complete sample can be found in spp-vm1.xml.

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
<name>spp-vm1</name>
<uuid>d90f5420-861a-4479-8559-62d7a1545cb9</uuid>
<memory unit='KiB'>4194304</memory>
<currentMemory unit='KiB'>4194304</currentMemory>
"..."
<qemu:commandline>
<qemu:arg value='-cpu'/>
<qemu:arg value='host'/>
<qemu:arg value='-object'/>
<qemu:arg value='memory-backend-file,
id=mem,size=4096M,mem-path=/run/hugepages/kvm,share=on'/>
<qemu:arg value='-numa'/>

(continues on next page)

3.3. How to Use 40

https://libvirt.org/drvqemu.html#qemucommand
http://git.dpdk.org/apps/spp/tree/docs/samples/spp-vm1.xml

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

<qemu:arg value='node,memdev=mem'/>
<qemu:arg value='-mem-prealloc'/>
<qemu:arg value='-chardev'/>
<qemu:arg value='socket,id=chr0,path=/tmp/sock0,server'/>
<qemu:arg value='-device'/>
<qemu:arg value='virtio-net-pci,netdev=vhost-net0,
mac=52:54:00:12:34:56'/>
<qemu:arg value='-netdev'/>
<qemu:arg value='vhost-user,id=vhost-net0,chardev=chr0,vhostforce'/>
<qemu:arg value='-chardev'/>
<qemu:arg value='socket,id=chr1,path=/tmp/sock1,server'/>
<qemu:arg value='-device'/>
<qemu:arg value='virtio-net-pci,netdev=vhost-net1,
mac=52:54:00:12:34:57'/>
<qemu:arg value='-netdev'/>
<qemu:arg value='vhost-user,id=vhost-net1,chardev=chr1,vhostforce'/>

</qemu:commandline>
</domain>

Launch VM

After updating XML configuration, launch VM with virsh start.

$ virsh start VM_NAME

It is required to add network configurations for processes running on the VMs. If this configu-
ration is skipped, processes cannot communicate with others via SPP.

On the VMs, add an interface and disable offload.

Add interface
$ sudo ifconfig IF_NAME inet IPADDR netmask NETMASK up

Disable offload
$ sudo ethtool -K IF_NAME tx off

3.4 Performance Optimization

3.4.1 Reduce Context Switches

Use the isolcpus Linux kernel parameter to isolate them from Linux scheduler to reduce
context switches. It prevents workloads of other processes than DPDK running on reserved
cores with isolcpus parameter.

For Ubuntu 16.04, define isolcpus in /etc/default/grub.

GRUB_CMDLINE_LINUX_DEFAULT=“isolcpus=0-3,5,7”

The value of this isolcpus depends on your environment and usage. This example reserves
six cores(0,1,2,3,5,7).

3.4. Performance Optimization 41

Soft Patch Panel Documentation, Release 19.11

3.4.2 Optimizing QEMU Performance

QEMU process runs threads for vcpu emulation. It is effective strategy for pinning vcpu threads
to decicated cores.

To find vcpu threads, you use ps command to find PID of QEMU process and pstree com-
mand for threads launched from QEMU process.

$ ps ea
PID TTY STAT TIME COMMAND

192606 pts/11 Sl+ 4:42 ./x86_64-softmmu/qemu-system-x86_64 -cpu host ...

Run pstree with -p and this PID to find all threads launched from QEMU.

$ pstree -p 192606
qemu-system-x86(192606)--+--{qemu-system-x8}(192607)

|--{qemu-system-x8}(192623)
|--{qemu-system-x8}(192624)
|--{qemu-system-x8}(192625)
|--{qemu-system-x8}(192626)

Update affinity by using taskset command to pin vcpu threads. The vcpu threads is listed
from the second entry and later. In this example, assign PID 192623 to core 4, PID 192624 to
core 5 and so on.

$ sudo taskset -pc 4 192623
pid 192623's current affinity list: 0-31
pid 192623's new affinity list: 4
$ sudo taskset -pc 5 192624
pid 192624's current affinity list: 0-31
pid 192624's new affinity list: 5
$ sudo taskset -pc 6 192625
pid 192625's current affinity list: 0-31
pid 192625's new affinity list: 6
$ sudo taskset -pc 7 192626
pid 192626's current affinity list: 0-31
pid 192626's new affinity list: 7

3.4.3 Consideration of NUMA node

spp_primary tries to create memory pool in the same NUMA node where it is launched.
Under NUMA configuration, the NUMA node where spp_primary is launched and the NUMA
node where NIC is connected can be different (e.g. spp_primary runs in NUMA node 0 while
NIC is connected with NUMA node 1). Such configuration may cause performance degrada-
tion. In general, under NUMA configuration, it is best practice to use CPU and NIC which
belongs to the same NUMA node for best performance. So user should align those when
performance degradation makes the situation critical.

To check NUMA node which CPU/NIC core belongs, lstopo command can be used. In the
following example, CPU core 0 belongs to NUMA node 0 while enp175s0f0 belongs to NUMA
node 1.

$ lstopo
Machine (93GB total)

NUMANode L#0 (P#0 46GB)
Package L#0 + L3 L#0 (17MB)

(continues on next page)

3.4. Performance Optimization 42

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

L2 L#0 (1024KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0
.....

NUMANode L#1 (P#1 47GB)
Package L#1 + L3 L#1 (17MB)

L2 L#12 (1024KB) + L1d L#12 (32KB) + L1i L#12 (32KB) + Core L#12
PU L#24 (P#1)
PU L#25 (P#25)

.....
HostBridge L#10

PCIBridge
PCI 8086:1563
Net L#10 "enp175s0f0"

PCI 8086:1563
Net L#11 "enp175s0f1"

CPU core where spp_primary run can be specified using -l option.

terminal 3
$ sudo ./src/primary/x86_64-native-linux-gcc/spp_primary \

-l 0 -n 4 \
--socket-mem 512,512 \
--huge-dir /dev/hugepages \
--proc-type primary \
--file-prefix $SPP_FILE_PREFIX \
--base-virtaddr 0x100000000
-- \
-p 0x03 \
-n 10 \
-s 192.168.1.100:5555

3.4.4 Reference

• [1] Best pinning strategy for latency/performance trade-off

• [2] PVP reference benchmark setup using testpmd

• [3] Enabling Additional Functionality

• [4] How to get best performance with NICs on Intel platforms

3.4. Performance Optimization 43

https://www.redhat.com/archives/vfio-users/2017-February/msg00010.html
http://dpdk.org/doc/guides/howto/pvp_reference_benchmark.html
http://dpdk.org/doc/guides/linux_gsg/enable_func.html
http://dpdk.org/doc/guides/linux_gsg/nic_perf_intel_platform.html

CHAPTER 4

Use Cases

As described in Design, SPP has several kinds of secondary process for usecases such as
simple forwarding to network entities, capturing or mirroring packets for monitoring, or connect-
ing VMs or containers for Service Function Chaining in NFV.

This chapter is focusing on explaining about each of secondary processes with simple use-
cases. Usecase of spp_primary is not covered here because it is almost similar to spp_nfv
and no need to explain both.

Details of usages of each process is not covered in this chapter. You can refer the details of
SPP processes via CLI from SPP Commands, or via REST API from API Reference.

4.1 spp_nfv

4.1.1 Single spp_nfv

The most simple usecase mainly for testing performance of packet forwarding on host. One
spp_nfv and two physical ports.

In this usecase, try to configure two senarios.

• Configure spp_nfv as L2fwd

• Configure spp_nfv for Loopback

First of all, Check the status of spp_nfv from SPP CLI.

spp > nfv 1; status
- status: idling
- lcore_ids:

- master: 1
- slave: 2

- ports:
- phy:0
- phy:1

44

Soft Patch Panel Documentation, Release 19.11

This status message explains that nfv 1 has two physical ports.

Configure spp_nfv as L2fwd

Assing the destination of ports with patch subcommand and start forwarding. Patch from
phy:0 to phy:1 and phy:1 to phy:0, which means it is bi-directional connection.

spp > nfv 1; patch phy:0 phy:1
Patch ports (phy:0 -> phy:1).
spp > nfv 1; patch phy:1 phy:0
Patch ports (phy:1 -> phy:0).
spp > nfv 1; forward
Start forwarding.

Confirm that status of nfv 1 is updated to running and ports are patches as you defined.

spp > nfv 1; status
- status: running
- lcore_ids:

- master: 1
- slave: 2

- ports:
- phy:0 -> phy:1
- phy:1 -> phy:0

Fig. 4.1: spp_nfv as l2fwd

Stop forwarding and reset patch to clear configuration. patch reset is to clear all of patch
configurations.

spp > nfv 1; stop
Stop forwarding.
spp > nfv 1; patch reset
Clear all of patches.

Configure spp_nfv for Loopback

Patch phy:0 to phy:0 and phy:1 to phy:1 for loopback.

spp > nfv 1; patch phy:0 phy:0
Patch ports (phy:0 -> phy:0).
spp > nfv 1; patch phy:1 phy:1
Patch ports (phy:1 -> phy:1).
spp > nfv 1; forward
Start forwarding.

4.1.2 Dual spp_nfv

Use case for testing performance of packet forwarding with two spp_nfv on host. Throughput
is expected to be better than Single spp_nfv usecase because bi-directional forwarding of
single spp_nfv is shared with two of uni-directional forwarding between dual spp_nfv.

In this usecase, configure two senarios almost similar to previous section.

4.1. spp_nfv 45

Soft Patch Panel Documentation, Release 19.11

• Configure Two spp_nfv as L2fwd

• Configure Two spp_nfv for Loopback

Configure Two spp_nfv as L2fwd

Assing the destination of ports with patch subcommand and start forwarding. Patch from
phy:0 to phy:1 for nfv 1 and from phy:1 to phy:0 for nfv 2.

spp > nfv 1; patch phy:0 phy:1
Patch ports (phy:0 -> phy:1).
spp > nfv 2; patch phy:1 phy:0
Patch ports (phy:1 -> phy:0).
spp > nfv 1; forward
Start forwarding.
spp > nfv 2; forward
Start forwarding.

Fig. 4.2: Two spp_nfv as l2fwd

Configure two spp_nfv for Loopback

Patch phy:0 to phy:0 for nfv 1 and phy:1 to phy:1 for nfv 2 for loopback.

spp > nfv 1; patch phy:0 phy:0
Patch ports (phy:0 -> phy:0).
spp > nfv 2; patch phy:1 phy:1
Patch ports (phy:1 -> phy:1).
spp > nfv 1; forward
Start forwarding.
spp > nfv 2; forward
Start forwarding.

Fig. 4.3: Two spp_nfv for loopback

4.1.3 Dual spp_nfv with Ring PMD

In this usecase, configure two senarios by using ring PMD.

• Uni-Directional L2fwd

• Bi-Directional L2fwd

Ring PMD

Ring PMD is an interface for communicating between secondaries on host. The maximum
number of ring PMDs is defined as -n option of spp_primary and ring ID is started from 0.

Ring PMD is added by using add subcommand. All of ring PMDs is showed with status
subcommand.

4.1. spp_nfv 46

Soft Patch Panel Documentation, Release 19.11

spp > nfv 1; add ring:0
Add ring:0.
spp > nfv 1; status
- status: idling
- lcore_ids:

- master: 1
- slave: 2

- ports:
- phy:0
- phy:1
- ring:0

Notice that ring:0 is added to nfv 1. You can delete it with del command if you do not
need to use it anymore.

spp > nfv 1; del ring:0
Delete ring:0.
spp > nfv 1; status
- status: idling
- lcore_ids:

- master: 1
- slave: 2

- ports:
- phy:0
- phy:1

Uni-Directional L2fwd

Add a ring PMD and connect two spp_nvf processes. To configure network path, add ring:0
to nfv 1 and nfv 2. Then, connect it with patch subcommand.

spp > nfv 1; add ring:0
Add ring:0.
spp > nfv 2; add ring:0
Add ring:0.
spp > nfv 1; patch phy:0 ring:0
Patch ports (phy:0 -> ring:0).
spp > nfv 2; patch ring:0 phy:1
Patch ports (ring:0 -> phy:1).
spp > nfv 1; forward
Start forwarding.
spp > nfv 2; forward
Start forwarding.

Fig. 4.4: Uni-Directional l2fwd

Bi-Directional L2fwd

Add two ring PMDs to two spp_nvf processes. For bi-directional forwarding, patch ring:0
for a path from nfv 1 to nfv 2 and ring:1 for another path from nfv 2 to nfv 1.

First, add ring:0 and ring:1 to nfv 1.

4.1. spp_nfv 47

Soft Patch Panel Documentation, Release 19.11

spp > nfv 1; add ring:0
Add ring:0.
spp > nfv 1; add ring:1
Add ring:1.
spp > nfv 1; status
- status: idling
- lcore_ids:

- master: 1
- slave: 2

- ports:
- phy:0
- phy:1
- ring:0
- ring:1

Then, add ring:0 and ring:1 to nfv 2.

spp > nfv 2; add ring:0
Add ring:0.
spp > nfv 2; add ring:1
Add ring:1.
spp > nfv 2; status
- status: idling
- lcore_ids:

- master: 1
- slave: 3

- ports:
- phy:0
- phy:1
- ring:0
- ring:1

spp > nfv 1; patch phy:0 ring:0
Patch ports (phy:0 -> ring:0).
spp > nfv 1; patch ring:1 phy:0
Patch ports (ring:1 -> phy:0).
spp > nfv 2; patch phy:1 ring:1
Patch ports (phy:1 -> ring:0).
spp > nfv 2; patch ring:0 phy:1
Patch ports (ring:0 -> phy:1).
spp > nfv 1; forward
Start forwarding.
spp > nfv 2; forward
Start forwarding.

Fig. 4.5: Bi-Directional l2fwd

4.1.4 Single spp_nfv with Vhost PMD

Vhost PMD

Vhost PMD is an interface for communicating between on hsot and guest VM. As described in
How to Use, vhost must be created by add subcommand before the VM is launched.

4.1. spp_nfv 48

Soft Patch Panel Documentation, Release 19.11

Setup Vhost PMD

In this usecase, add vhost:0 to nfv 1 for communicating with the VM. First, check if /tmp/
sock0 is already exist. You should remove it already exist to avoid a failure of socket file
creation.

remove sock0 if already exist
$ ls /tmp | grep sock
sock0 ...
$ sudo rm /tmp/sock0

Create /tmp/sock0 from nfv 1.

spp > nfv 1; add vhost:0
Add vhost:0.

Setup Network Configuration in spp_nfv

Launch a VM by using the vhost interface created in the previous step. Lauunching VM is
described in How to Use.

Patch phy:0 to vhost:0 and vhost:1 to phy:1 from nfv 1 running on host.

spp > nfv 1; patch phy:0 vhost:0
Patch ports (phy:0 -> vhost:0).
spp > nfv 1; patch vhost:1 phy:1
Patch ports (vhost:1 -> phy:1).
spp > nfv 1; forward
Start forwarding.

Finally, start forwarding inside the VM by using two vhost ports to confirm that network on host
is configured.

$ sudo $RTE_SDK/examples/build/l2fwd -l 0-1 -- -p 0x03

Fig. 4.6: Single spp_nfv with vhost PMD

4.1.5 Single spp_nfv with PCAP PMD

PCAP PMD

Pcap PMD is an interface for capturing or restoring traffic. For usign pcap PMD, you should set
CONFIG_RTE_LIBRTE_PMD_PCAP and CONFIG_RTE_PORT_PCAP to y and compile DPDK
before SPP. Refer to Install DPDK and SPP for details of setting up.

Pcap PMD has two different streams for rx and tx. Tx device is for capturing packets and rx is
for restoring captured packets. For rx device, you can use any of pcap files other than SPP’s
pcap PMD.

To start using pcap pmd, just using add subcommand as ring. Here is an example for creating
pcap PMD pcap:1.

4.1. spp_nfv 49

Soft Patch Panel Documentation, Release 19.11

spp > nfv 1; add pcap:1

After running it, you can find two of pcap files in /tmp.

$ ls /tmp | grep pcap$
spp-rx1.pcap
spp-tx1.pcap

If you already have a dumped file, you can use it by it putting as /tmp/spp-rx1.pcap before
running the add subcommand. SPP does not overwrite rx pcap file if it already exist, and it just
overwrites tx pcap file.

Capture Incoming Packets

As the first usecase, add a pcap PMD and capture incoming packets from phy:0.

spp > nfv 1; add pcap 1
Add pcap:1.
spp > nfv 1; patch phy:0 pcap:1
Patch ports (phy:0 -> pcap:1).
spp > nfv 1; forward
Start forwarding.

Fig. 4.7: Rapture incoming packets

In this example, we use pktgen. Once you start forwarding packets from pktgen, you can see
that the size of /tmp/spp-tx1.pcap is increased rapidly (or gradually, it depends on the
rate).

Pktgen:/> set 0 size 1024
Pktgen:/> start 0

To stop capturing, simply stop forwarding of spp_nfv.

spp > nfv 1; stop
Stop forwarding.

You can analyze the dumped pcap file with other tools like as wireshark.

Restore dumped Packets

In this usecase, use dumped file in previsou section. Copy spp-tx1.pcap to spp-rx2.pcap
first.

$ sudo cp /tmp/spp-tx1.pcap /tmp/spp-rx2.pcap

Then, add pcap PMD pcap:2 to another spp_nfv.

spp > nfv 2; add pcap:2
Add pcap:2.

You can find that spp-tx2.pcap is creaeted and spp-rx2.pcap still remained.

4.1. spp_nfv 50

Soft Patch Panel Documentation, Release 19.11

Fig. 4.8: Restore dumped packets

$ ls -al /tmp/spp*.pcap
-rw-r--r-- 1 root root 24 ... /tmp/spp-rx1.pcap
-rw-r--r-- 1 root root 2936703640 ... /tmp/spp-rx2.pcap
-rw-r--r-- 1 root root 2936703640 ... /tmp/spp-tx1.pcap
-rw-r--r-- 1 root root 0 ... /tmp/spp-tx2.pcap

To confirm packets are restored, patch pcap:2 to phy:1 and watch received packets on
pktgen.

spp > nfv 2; patch pcap:2 phy:1
Patch ports (pcap:2 -> phy:1).
spp > nfv 2; forward
Start forwarding.

After started forwarding, you can see that packet count is increased.

4.2 spp_vf

spp_vf is a secondary process for providing L2 classification as a simple pusedo SR-IOV
features.

Note: --file-prefix option is not required in this section because there is not DPDK
application other than SPP.

4.2.1 Classify ICMP Packets

To confirm classifying packets, sends ICMP packet from remote node by using ping and watch
the response. Incoming packets through NIC0 are classified based on destination address.

Fig. 4.9: Network Configuration

Setup

Launch spp-ctl and SPP CLI before primary and secondary processes.

terminal 1
$ python3 ./src/spp-ctl/spp-ctl -b 192.168.1.100

terminal 2
$ python3 ./src/spp.py -b 192.168.1.100

spp_primary on the second lcore with -l 0 and two ports -p 0x03.

4.2. spp_vf 51

Soft Patch Panel Documentation, Release 19.11

terminal 3
$ sudo ./src/primary/x86_64-native-linux-gcc/spp_primary \

-l 1 -n 4 \
--socket-mem 512,512 \
--huge-dir=/run/hugepages/kvm \
--proc-type=primary \
-- \
-p 0x03 \
-n 10 -s 192.168.1.100:5555

After spp_primary is launched, run secondary process spp_vf. In this case, lcore options
is -l 2-6 for one master thread and four worker threads.

terminal 4
$ sudo ./src/vf/x86_64-native-linux-gcc/spp_vf \

-l 2-6 \
-n 4 --proc-type=secondary \
-- \
--client-id 1 \
-s 192.168.1.100:6666 \

Network Configuration

Configure network as described in Fig. 4.9 step by step.

First of all, setup worker threads from component command with lcore ID and other options
on local host host2.

terminal 2
spp > vf 1; component start cls 3 classifier
spp > vf 1; component start fwd1 4 forward
spp > vf 1; component start fwd2 5 forward
spp > vf 1; component start mgr 6 merge

Add ports for each of components as following. The number of rx and tx ports are different for
each of component’s role.

terminal 2

classifier
spp > vf 1; port add phy:0 rx cls
spp > vf 1; port add ring:0 tx cls
spp > vf 1; port add ring:1 tx cls

forwarders
spp > vf 1; port add ring:0 rx fwd1
spp > vf 1; port add ring:2 tx fwd1
spp > vf 1; port add ring:1 rx fwd2
spp > vf 1; port add ring:3 tx fwd2

merger
spp > vf 1; port add ring:2 rx mgr
spp > vf 1; port add ring:3 rx mgr
spp > vf 1; port add phy:1 tx mgr

You also need to configure MAC address table for classifier. In this case, you need to register
two MAC addresses. Although any MAC can be used, you use 52:54:00:12:34:56 and
52:54:00:12:34:58.

4.2. spp_vf 52

Soft Patch Panel Documentation, Release 19.11

terminal 2
spp > vf 1; classifier_table add mac 52:54:00:12:34:56 ring:0
spp > vf 1; classifier_table add mac 52:54:00:12:34:58 ring:1

Send Packet from Remote Host

Ensure NICs, ens0 and ens1 in this case, are upped on remote host host1. You can up by
using ifconfig if the status is down.

terminal 1 on remote host
Configure ip address of ens0
$ sudo ifconfig ens0 192.168.140.1 netmask 255.255.255.0 up

Add arp entries of MAC addresses statically to be resolved.

terminal 1 on remote host
set MAC address
$ sudo arp -i ens0 -s 192.168.140.2 52:54:00:12:34:56
$ sudo arp -i ens0 -s 192.168.140.3 52:54:00:12:34:58

Start tcpdump command for capturing ens1.

terminal 2 on remote host
$ sudo tcpdump -i ens1

Then, start ping in other terminals.

terminal 3 on remote host
ping via NIC0
$ ping 192.168.140.2

terminal 4 on remote host
ping via NIC0
$ ping 192.168.140.3

You can see ICMP Echo requests are received from ping on terminal 2.

Shutdown spp_vf Components

Basically, you can shutdown all of SPP processes with bye all command. This section
describes graceful shutting down. First, delete entries of classifier_table and ports of
components.

terminal 2
Delete MAC address from Classifier
spp > vf 1; classifier_table del mac 52:54:00:12:34:56 ring:0
spp > vf 1; classifier_table del mac 52:54:00:12:34:58 ring:1

terminal 2
classifier
spp > vf 1; port del phy:0 rx cls
spp > vf 1; port del ring:0 tx cls
spp > vf 1; port del ring:1 tx cls

(continues on next page)

4.2. spp_vf 53

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

forwarders
spp > vf 1; port del ring:0 rx fwd1
spp > vf 1; port del ring:2 tx fwd1
spp > vf 1; port del ring:1 rx fwd2
spp > vf 1; port del ring:3 tx fwd2

mergers
spp > vf 1; port del ring:2 rx mgr
spp > vf 1; port del ring:3 rx mgr
spp > vf 1; port del phy:1 tx mgr

Then, stop components.

terminal 2
spp > vf 1; component stop cls
spp > vf 1; component stop fwd1
spp > vf 1; component stop fwd2
spp > vf 1; component stop mgr

You can confirm that worker threads are cleaned from status.

spp > vf 1; status
Basic Information:

- client-id: 1
- ports: [phy:0, phy:1]
- lcore_ids:
- master: 2
- slaves: [3, 4, 5, 6]

Classifier Table:
No entries.

Components:
- core:3 '' (type: unuse)
- core:4 '' (type: unuse)
- core:5 '' (type: unuse)
- core:6 '' (type: unuse)

Finally, terminate spp_vf by using exit or bye sec.

spp > vf 1; exit

4.2.2 SSH Login to VMs

This usecase is to classify packets for ssh connections as another example. Incoming packets
are classified based on destination addresses and reterned packets are aggregated before
going out.

Fig. 4.10: Simple SSH Login

Setup

Launch spp-ctl and SPP CLI before primary and secondary processes.

terminal 1
$ python3 ./src/spp-ctl/spp-ctl -b 192.168.1.100

4.2. spp_vf 54

Soft Patch Panel Documentation, Release 19.11

terminal 2
$ python3 ./src/spp.py -b 192.168.1.100

spp_primary on the second lcore with -l 1 and two ports -p 0x03.

terminal 3
$ sudo ./src/primary/x86_64-native-linux-gcc/spp_primary \

-l 1 -n 4 \
--socket-mem 512,512 \
--huge-dir=/run/hugepages/kvm \
--proc-type=primary \
-- \
-p 0x03 -n 10 -s 192.168.1.100:5555

Then, run secondary process spp_vf with -l 0,2-13 which indicates to use twelve lcores.

terminal 4
$ sudo ./src/vf/x86_64-native-linux-gcc/spp_vf \

-l 0,2-13 \
-n 4 --proc-type=secondary \
-- \
--client-id 1 \
-s 192.168.1.100:6666 --vhost-client

Network Configuration

Detailed netowrk configuration of Fig. 4.10 is described below. In this usecase, use two NICs
on each of host1 and host2 for redundancy.

Incoming packets through NIC0 or NIC1 are classified based on destionation address.

Fig. 4.11: Network Configuration SSH with spp_vhost

You need to input a little bit large amount of commands for the configuration, or use playback
command to load from config files. You can load network configuration from recipes in
recipes/usecases/ as following.

terminal 2
Load config from recipe
spp > playback recipes/usecases/spp_vf/ssh/1-start_components.rcp
spp > playback recipes/usecases/spp_vf/ssh/2-add_port_path1.rcp
....

First of all, start components with names such as cls1, fwd1 or so.

terminal 2
spp > vf 1; component start cls1 2 classifier
spp > vf 1; component start fwd1 3 forward
spp > vf 1; component start fwd2 4 forward
spp > vf 1; component start fwd3 5 forward
spp > vf 1; component start fwd4 6 forward
spp > vf 1; component start mgr1 7 merge

Each of components must have rx and tx ports for forwarding. Add ports for each of compo-
nents as following. You notice that classifier has two tx ports and merger has two rx ports.

4.2. spp_vf 55

Soft Patch Panel Documentation, Release 19.11

terminal 2
classifier
spp > vf 1; port add phy:0 rx cls1
spp > vf 1; port add ring:0 tx cls1
spp > vf 1; port add ring:1 tx cls1

forwarders
spp > vf 1; port add ring:0 rx fwd1
spp > vf 1; port add vhost:0 tx fwd1
spp > vf 1; port add ring:1 rx fwd2
spp > vf 1; port add vhost:2 tx fwd2
spp > vf 1; port add vhost:0 rx fwd3
spp > vf 1; port add ring:2 tx fwd3
spp > vf 1; port add vhost:2 rx fwd4
spp > vf 1; port add ring:3 tx fwd4

merger
spp > vf 1; port add ring:2 rx mgr1
spp > vf 1; port add ring:3 rx mgr1
spp > vf 1; port add phy:0 tx mgr1

Classifier component decides the destination with MAC address by referring
classifier_table. MAC address and corresponging port is registered to the table.
In this usecase, you need to register two MAC addresses of targetting VM for mgr1, and also
mgr2 later.

terminal 2
Register MAC addresses for mgr1
spp > vf 1; classifier_table add mac 52:54:00:12:34:56 ring:0
spp > vf 1; classifier_table add mac 52:54:00:12:34:58 ring:1

Configuration for the second login path is almost the same as the first path.

terminal 2
spp > vf 1; component start cls2 8 classifier
spp > vf 1; component start fwd5 9 forward
spp > vf 1; component start fwd6 10 forward
spp > vf 1; component start fwd7 11 forward
spp > vf 1; component start fwd8 12 forward
spp > vf 1; component start mgr2 13 merge

Add ports to each of components.

terminal 2
classifier
spp > vf 1; port add phy:1 rx cls2
spp > vf 1; port add ring:4 tx cls2
spp > vf 1; port add ring:5 tx cls2

forwarders
spp > vf 1; port add ring:4 rx fwd5
spp > vf 1; port add vhost:1 tx fwd5
spp > vf 1; port add ring:5 rx fwd6
spp > vf 1; port add vhost:3 tx fwd6
spp > vf 1; port add vhost:1 rx fwd7
spp > vf 1; port add ring:6 tx fwd7
spp > vf 1; port add vhost:3 rx fwd8
spp > vf 1; port add ring:7 tx fwd8

merger

(continues on next page)

4.2. spp_vf 56

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

spp > vf 1; port add ring:6 rx mgr2
spp > vf 1; port add ring:7 rx mgr2
spp > vf 1; port add phy:1 tx mgr2

Register MAC address entries to classifier_table for cls2.

terminal 2
Register MAC address to classifier
spp > vf 1; classifier_table add mac 52:54:00:12:34:57 ring:4
spp > vf 1; classifier_table add mac 52:54:00:12:34:59 ring:5

Setup VMs

Launch two VMs with virsh command. Setup for virsh is described in Using virsh. In this case,
VMs are named as spp-vm1 and spp-vm2.

terminal 5
$ virsh start spp-vm1 # VM1
$ virsh start spp-vm2 # VM2

After VMs are launched, login to spp-vm1 first to configure.

Note: To avoid asked for unknown keys while login VMs, use -o
StrictHostKeyChecking=no option for ssh.

$ ssh -o StrictHostKeyChecking=no sppuser at 192.168.122.31

Up interfaces and disable TCP offload to avoid ssh login is failed.

terminal 5
up interfaces
$ sudo ifconfig ens4 inet 192.168.140.21 netmask 255.255.255.0 up
$ sudo ifconfig ens5 inet 192.168.150.22 netmask 255.255.255.0 up

disable TCP offload
$ sudo ethtool -K ens4 tx off
$ sudo ethtool -K ens5 tx off

Configuration of spp-vm2 is almost similar to spp-vm1.

terminal 5
up interfaces
$ sudo ifconfig ens4 inet 192.168.140.31 netmask 255.255.255.0 up
$ sudo ifconfig ens5 inet 192.168.150.32 netmask 255.255.255.0 up

disable TCP offload
$ sudo ethtool -K ens4 tx off
$ sudo ethtool -K ens5 tx off

Login to VMs

Now, you can login to VMs from the remote host1.

4.2. spp_vf 57

Soft Patch Panel Documentation, Release 19.11

terminal 5
spp-vm1 via NIC0
$ ssh sppuser@192.168.140.21

spp-vm1 via NIC1
$ ssh sppuser@192.168.150.22

spp-vm2 via NIC0
$ ssh sppuser@192.168.140.31

spp-vm2 via NIC1
$ ssh sppuser@192.168.150.32

Shutdown spp_vf Components

Basically, you can shutdown all of SPP processes with bye all command. This section
describes graceful shutting down.

First, delete entries of classifier_table and ports of components for the first SSH login
path.

terminal 2
Delete MAC address from table
spp > vf 1; classifier_table del mac 52:54:00:12:34:56 ring:0
spp > vf 1; classifier_table del mac 52:54:00:12:34:58 ring:1

Delete ports.

terminal 2
classifier
spp > vf 1; port del phy:0 rx cls1
spp > vf 1; port del ring:0 tx cls1
spp > vf 1; port del ring:1 tx cls1

forwarders
spp > vf 1; port del ring:0 rx fwd1
spp > vf 1; port del vhost:0 tx fwd1
spp > vf 1; port del ring:1 rx fwd2
spp > vf 1; port del vhost:2 tx fwd2
spp > vf 1; port del vhost:0 rx fwd3
spp > vf 1; port del ring:2 tx fwd3
spp > vf 1; port del vhost:2 rx fwd4
spp > vf 1; port del ring:3 tx fwd4

merger
spp > vf 1; port del ring:2 rx mgr1
spp > vf 1; port del ring:3 rx mgr1
spp > vf 1; port del phy:0 tx mgr1

Then, stop components.

terminal 2
Stop component to spp_vf
spp > vf 1; component stop cls1
spp > vf 1; component stop fwd1
spp > vf 1; component stop fwd2
spp > vf 1; component stop fwd3
spp > vf 1; component stop fwd4
spp > vf 1; component stop mgr1

4.2. spp_vf 58

Soft Patch Panel Documentation, Release 19.11

Second, do termination for the second path. Delete entries from the table and ports from each
of components.

terminal 2
Delete MAC address from Classifier
spp > vf 1; classifier_table del mac 52:54:00:12:34:57 ring:4
spp > vf 1; classifier_table del mac 52:54:00:12:34:59 ring:5

terminal 2
classifier2
spp > vf 1; port del phy:1 rx cls2
spp > vf 1; port del ring:4 tx cls2
spp > vf 1; port del ring:5 tx cls2

forwarder
spp > vf 1; port del ring:4 rx fwd5
spp > vf 1; port del vhost:1 tx fwd5
spp > vf 1; port del ring:5 rx fwd6
spp > vf 1; port del vhost:3 tx fwd6
spp > vf 1; port del vhost:1 rx fwd7
spp > vf 1; port del ring:6 tx fwd7
spp > vf 1; port del vhost:3 rx fwd8
spp > vf 1; port del ring:7 tx fwd8

merger
spp > vf 1; port del ring:6 rx mgr2
spp > vf 1; port del ring:7 rx mgr2
spp > vf 1; port del phy:1 tx mgr2

Then, stop components.

terminal 2
Stop component to spp_vf
spp > vf 1; component stop cls2
spp > vf 1; component stop fwd5
spp > vf 1; component stop fwd6
spp > vf 1; component stop fwd7
spp > vf 1; component stop fwd8
spp > vf 1; component stop mgr2

Exit spp_vf

Terminate spp_vf.

terminal 2
spp > vf 1; exit

4.3 spp_mirror

Note: --file-prefix option is not required in this section because there is not DPDK
application other than SPP.

4.3. spp_mirror 59

Soft Patch Panel Documentation, Release 19.11

4.3.1 Duplicate Packets

Simply duplicate incoming packets and send to two destinations. Remote host1 sends ARP
packets by using ping command and spp_mirror running on local host2 duplicates packets
to destination ports.

Network Configuration

Detailed configuration is described in Fig. 4.12. In this diagram, incoming packets from phy:0
are mirrored. In spp_mirror process, worker thread mir copies incoming packets and sends
to two destinations phy:1 and phy:2.

Fig. 4.12: Duplicate packets with spp_mirror

Setup SPP

Change directory to spp and confirm that it is already compiled.

$ cd /path/to/spp

Launch spp-ctl before launching SPP primary and secondary processes. You also need to
launch spp.py if you use spp_mirror from CLI. -b option is for binding IP address to com-
municate other SPP processes, but no need to give it explicitly if 127.0.0.1 or localhost
.

terminal 1
Launch spp-ctl
$ python3 ./src/spp-ctl/spp-ctl -b 192.168.1.100

terminal 2
Launch SPP CLI
$ python3 ./src/spp.py -b 192.168.1.100

Start spp_primary with core list option -l 1 and three ports -p 0x07.

terminal 3
$ sudo ./src/primary/x86_64-native-linux-gcc/spp_primary \

-l 1 -n 4 \
--socket-mem 512,512 \
--huge-dir=/run/hugepages/kvm \
--proc-type=primary \
-- \
-p 0x07 -n 10 -s 192.168.1.100:5555

Launch spp_mirror

Run secondary process spp_mirror.

terminal 4
$ sudo ./src/mirror/x86_64-native-linux-gcc/app/spp_mirror \
-l 0,2 -n 4 \

(continues on next page)

4.3. spp_mirror 60

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

--proc-type secondary \
-- \
--client-id 1 \
-s 192.168.1.100:6666 \

Start mirror component with core ID 2.

terminal 2
spp > mirror 1; component start mir 2 mirror

Add phy:0 as rx port, and phy:1 and phy:2 as tx ports.

terminal 2
add ports to mir
spp > mirror 1; port add phy:0 rx mir
spp > mirror 1; port add phy:1 tx mir
spp > mirror 1; port add phy:2 tx mir

Duplicate Packets

To check packets are mirrored, you run tcpdump for ens1 and ens2. As you run ping for ens0
next, you will see the same ARP requests trying to resolve 192.168.140.21 on terminal 1
and 2.

terminal 1 at host1
capture on ens1
$ sudo tcpdump -i ens1
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on ens1, link-type EN10MB (Ethernet), capture size 262144 bytes
21:18:44.183261 ARP, Request who-has 192.168.140.21 tell R740n15, length 28
21:18:45.202182 ARP, Request who-has 192.168.140.21 tell R740n15, length 28
....

terminal 2 at host1
capture on ens2
$ sudo tcpdump -i ens2
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on ens2, link-type EN10MB (Ethernet), capture size 262144 bytes
21:18:44.183261 ARP, Request who-has 192.168.140.21 tell R740n15, length 28
21:18:45.202182 ARP, Request who-has 192.168.140.21 tell R740n15, length 28
...

Start to send ARP request with ping.

terminal 3 at host1
send packet from NIC0
$ ping 192.168.140.21 -I ens0

Stop Mirroring

Delete ports for components.

Delete port for mir
spp > mirror 1; port del phy:0 rx mir

(continues on next page)

4.3. spp_mirror 61

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

spp > mirror 1; port del phy:1 tx mir
spp > mirror 1; port del phy:2 tx mir

Next, stop components.

Stop mirror
spp > mirror 1; component stop mir 2 mirror

spp > mirror 1; status
Basic Information:

- client-id: 1
- ports: [phy:0, phy:1]
- lcore_ids:
- master: 0
- slave: 2

Components:
- core:2 '' (type: unuse)

Finally, terminate spp_mirror to finish this usecase.

spp > mirror 1; exit

4.3.2 Monitoring Packets

Duplicate classified packets for monitoring before going to a VM. In this usecase, we are only
interested in packets going to VM1. Although you might be able to run packet monitor app
on host, run monitor on VM3 considering more NFV like senario. You use spp_mirror for
copying, and spp_vf classifying packets.

Fig. 4.13: Monitoring with spp_mirror

Setup SPP and VMs

Launch spp-ctl before launching SPP primary and secondary processes. You also need to
launch spp.py if you use spp_vf from CLI. -b option is for binding IP address to communicate
other SPP processes, but no need to give it explicitly if 127.0.0.1 or localhost although
doing explicitly in this example to be more understandable.

terminal 1
$ python3 ./src/spp-ctl/spp-ctl -b 192.168.1.100

terminal 2
$ python3 ./src/spp.py -b 192.168.1.100

Start spp_primary with core list option -l 1.

terminal 3
Type the following in different terminal
$ sudo ./src/primary/x86_64-native-linux-gcc/spp_primary \

-l 1 -n 4 \
--socket-mem 512,512 \
--huge-dir=/run/hugepages/kvm \

(continues on next page)

4.3. spp_mirror 62

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

--proc-type=primary \
-- \
-p 0x03 \
-n 10 -s 192.168.1.100:5555

Netowrk Configuration

Detailed configuration of Fig. 4.13 is described in Fig. 4.14. In this senario, worker thread mir
copies incoming packets from though ring:0. Then, sends to orignal destination VM1 and
anohter one VM3.

Fig. 4.14: Network configuration of monitoring packets

Launch VM1, VM2 and spp_vf with core list -l 0,2-8.

terminal 4
$ sudo ./src/vf/x86_64-native-linux-gcc/spp_vf \

-l 0,2-8 \
-n 4 --proc-type secondary \
-- \
--client-id 1 \
-s 192.168.1.100:6666 \
--vhost-client

Start components in spp_vf.

terminal 2
spp > vf 1; component start cls 2 classifier
spp > vf 1; component start mgr 3 merge
spp > vf 1; component start fwd1 4 forward
spp > vf 1; component start fwd2 5 forward
spp > vf 1; component start fwd3 6 forward
spp > vf 1; component start fwd4 7 forward
spp > vf 1; component start fwd5 8 forward

Add ports for components.

terminal 2
spp > vf 1; port add phy:0 rx cls
spp > vf 1; port add ring:0 tx cls
spp > vf 1; port add ring:1 tx cls

spp > vf 1; port add ring:2 rx mgr
spp > vf 1; port add ring:3 rx mgr
spp > vf 1; port add phy:0 tx mgr

spp > vf 1; port add ring:5 rx fwd1
spp > vf 1; port add vhost:0 tx fwd1

spp > vf 1; port add ring:1 rx fwd2
spp > vf 1; port add vhost:2 tx fwd2

spp > vf 1; port add vhost:1 rx fwd3
spp > vf 1; port add ring:2 tx fwd3

spp > vf 1; port add vhost:3 rx fwd4

(continues on next page)

4.3. spp_mirror 63

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

spp > vf 1; port add ring:3 tx fwd4

spp > vf 1; port add ring:4 rx fwd5
spp > vf 1; port add vhost:4 tx fwd5

Add classifier table entries.

terminal 2
spp > vf 1; classifier_table add mac 52:54:00:12:34:56 ring:0
spp > vf 1; classifier_table add mac 52:54:00:12:34:58 ring:1

Launch spp_mirror

Run spp_mirror.

terminal 6
$ sudo ./src/mirror/x86_64-native-linux-gcc/app/spp_mirror \

-l 0,9 \
-n 4 --proc-type secondary \
-- \
--client-id 2 \
-s 192.168.1.100:6666 \
--vhost-client

Start mirror component with lcore ID 9.

terminal 2
spp > mirror 2; component start mir 9 mirror

Add ring:0 as rx port, ring:4 and ring:5 as tx ports.

terminal 2
spp > mirror 2; port add ring:0 rx mir
spp > mirror 2; port add ring:4 tx mir
spp > mirror 2; port add ring:5 tx mir

Receive Packet on VM3

You can capture incoming packets on VM3 and compare it with on VM1. To capture incoming
packets , use tcpdump for the interface, ens4 in this case.

terminal 5
capture on ens4 of VM1
$ tcpdump -i ens4

terminal 7
capture on ens4 of VM3
$ tcpdump -i ens4

You send packets from the remote host1 and confirm packets are received. IP address is the
same as Usecase of spp_vf .

Send packets from host1
$ ping 192.168.140.21

4.3. spp_mirror 64

Soft Patch Panel Documentation, Release 19.11

Stop Mirroring

Graceful shutdown of secondary processes is same as previous usecases.

4.4 spp_pcap

Note: --file-prefix option is not required in this section because there is not DPDK
application other than SPP.

4.4.1 Packet Capture

This section describes a usecase for capturing packets with spp_pcap. See inside of the
captured file with tcpdump command. Fig. 4.15 shows the overview of scenario in which
incoming packets via phy:0 are dumped as compressed pcap files by using spp_pcap.

Fig. 4.15: Packet capture with spp_pcap

Launch spp_pcap

Change directory if you are not in SPP’s directory, and compile if not done yet.

$ cd /path/to/spp

Launch spp-ctl and SPP CLI in different terminals.

terminal 1
$ python3 ./src/spp-ctl/spp-ctl -b 192.168.1.100

terminal 2
$ python3 ./src/spp.py -b 192.168.1.100

Then, run spp_primary with one physical port.

terminal 3
$ sudo ./src/primary/x86_64-native-linux-gcc/spp_primary \

-l 0 -n 4 \
--socket-mem 512,512 \
--huge-dir /run/hugepages/kvm \
--proc-type primary \
-- \
-p 0x01 \
-n 8 -s 192.168.1.100:5555

After spp_primary is launched successfully, run spp_pcap in other terminal. In this usecase,
you use default values for optional arguments. Output directory of captured file is /tmp and
the size of file is 1GiB. You notice that six lcores are assigned with -l 1-6. It means that you
use one locre for master, one for receiver, and four for writer threads.

4.4. spp_pcap 65

Soft Patch Panel Documentation, Release 19.11

terminal 4
$ sudo ./src/pcap/x86_64-native-linux-gcc/spp_pcap \

-l 1-6 -n 4 --proc-type=secondary \
-- \
--client-id 1 -s 192.168.1.100:6666 \
-c phy:0

You can confirm lcores and worker threads running on from status command.

terminal 2
spp > pcap 1; status
Basic Information:

- client-id: 1
- status: idle
- lcore_ids:
- master: 1
- slaves: [2, 3, 4, 5, 6]

Components:
- core:2 receive
- rx: phy:0

- core:3 write
- filename:

- core:4 write
- filename:

- core:5 write
- filename:

- core:6 write
- filename:

Start Capture

If you already started to send packets to phy:0 from outside, you are ready to start capturing
packets.

terminal 2
spp > pcap 1; start
Start packet capture.

As you run start command, PCAP files are generated for each of writer threads for cap-
turing.

terminal 2
spp > pcap 1; status
Basic Information:

- client-id: 1
- status: running
- lcore_ids:
- master: 1
- slaves: [2, 3, 4, 5, 6]

Components:
- core:2 receive
- rx: phy:0

- core:3 write
- filename: /tmp/spp_pcap.20190214161550.phy0.1.1.pcap.lz4

- core:4 write
- filename: /tmp/spp_pcap.20190214161550.phy0.2.1.pcap.lz4

- core:5 write
- filename: /tmp/spp_pcap.20190214161550.phy0.3.1.pcap.lz4

(continues on next page)

4.4. spp_pcap 66

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

- core:6 write
- filename: /tmp/spp_pcap.20190214161550.phy0.4.1.pcap.lz4

Stop Capture

Stop capturing and confirm that compressed PCAP files are generated.

terminal 2
spp > pcap 1; stop
spp > ls /tmp
....
spp_pcap.20190214175446.phy0.1.1.pcap.lz4
spp_pcap.20190214175446.phy0.1.2.pcap.lz4
spp_pcap.20190214175446.phy0.1.3.pcap.lz4
spp_pcap.20190214175446.phy0.2.1.pcap.lz4
spp_pcap.20190214175446.phy0.2.2.pcap.lz4
spp_pcap.20190214175446.phy0.2.3.pcap.lz4
....

Index in the filename, such as 1.1 or 1.2, is a combination of writer thread ID and se-
quenceal number. In this case, it means each of four threads generate three files.

Shutdown spp_pcap

Run exit or bye sec command to terminate spp_pcap.

terminal 2
spp > pcap 1; exit

Inspect PCAP Files

You can inspect captured PCAP files by using utilities.

Merge PCAP Files

Extract and merge compressed PCAP files.

For extract several LZ4 files at once, use -d and -m options. -d is for decompression and -m
is for multiple files.

You had better not to merge divided files into single file, but still several files because the size
of merged file might be huge. Each of extracted PCAP file is 1GiB in default, so total size of
extracted files is 12GiB in this case. To avoid the situation, merge files for each of threads and
generate four PCAP files of 3GiB.

First, extract LZ4 files of writer thread ID 1.

terminal 4
$ lz4 -d -m /tmp/spp_pcap.20190214175446.phy0.1.*

And confirm that the files are extracted.

4.4. spp_pcap 67

Soft Patch Panel Documentation, Release 19.11

terminal 4
$ ls /tmp | grep pcap$
spp_pcap.20190214175446.phy0.1.1.pcap
spp_pcap.20190214175446.phy0.1.2.pcap
spp_pcap.20190214175446.phy0.1.3.pcap

Run mergecap command to merge extracted files to current directory as spp_pcap1.pcap.

terminal 4
$ mergecap /tmp/spp_pcap.20190214175446.phy0.1.*.pcap -w spp_pcap1.pcap

Inspect PCAP file

You can use any of applications, for instance wireshark or tcpdump, for inspecting PCAP file.
To inspect the merged PCAP file, read packet data from tcpdump command in this usecase.
-r option is to dump packet data in human readable format.

terminal 4
$ tcpdump -r spp_pcap1.pcap | less
17:54:52.559783 IP 192.168.0.100.1234 > 192.168.1.1.5678: Flags [.], ...
17:54:52.559784 IP 192.168.0.100.1234 > 192.168.1.1.5678: Flags [.], ...
17:54:52.559785 IP 192.168.0.100.1234 > 192.168.1.1.5678: Flags [.], ...
17:54:52.559785 IP 192.168.0.100.1234 > 192.168.1.1.5678: Flags [.], ...

4.5 Multiple Nodes

SPP provides multi-node support for configuring network across several nodes from SPP CLI.
You can configure each of nodes step by step.

In Fig. 4.16, there are four nodes on which SPP and service VMs are running. Host1 behaves
as a patch panel for connecting between other nodes. A request is sent from a VM on host2
to a VM on host3 or host4. Host4 is a backup server for host3 and replaced with host3 by
changing network configuration. Blue lines are paths for host3 and red lines are for host4, and
changed alternatively.

Fig. 4.16: Multiple nodes example

4.5.1 Launch SPP on Multiple Nodes

Before SPP CLI, launch spp-ctl on each of nodes. You should give IP address with -b option
to be accessed from outside of the node. This is an example for launching spp-ctl on host1.

Launch on host1
$ python3 src/spp-ctl/spp-ctl -b 192.168.11.101

You also need to launch it on host2, host3 and host4 in each of terminals.

After all of spp-ctls are lauched, launch SPP CLI with four -b options for each of hosts. SPP
CLI is able to be launched on any of nodes.

4.5. Multiple Nodes 68

Soft Patch Panel Documentation, Release 19.11

Launch SPP CLI
$ python3 src/spp.py -b 192.168.11.101 \

-b 192.168.11.102 \
-b 192.168.11.103 \
-b 192.168.11.104 \

Or you can add nodes after launching SPP CLI. Here is an example of launching it with first
node, and adding the rest of nodes after.

Launch SPP CLI
$ python3 src/spp.py -b 192.168.11.101
Welcome to the spp. Type help or ? to list commands.

spp > server add 192.168.11.102
Registered spp-ctl "192.168.11.102:7777".
spp > server add 192.168.11.103
Registered spp-ctl "192.168.11.103:7777".
spp > server add 192.168.11.104
Registered spp-ctl "192.168.11.104:7777".

If you have succeeded to launch all of spp-ctl processes before, you can find them by run-
ning sever list command.

Launch SPP CLI
spp > server list

1: 192.168.1.101:7777 *
2: 192.168.1.102:7777
3: 192.168.1.103:7777
4: 192.168.1.104:7777

You might notice that first entry is marked with *. It means that the current node under the
management is the first node.

4.5.2 Switch Nodes

SPP CLI manages a node marked with *. If you configure other nodes, change the managed
node with server command. Here is an example to switch to third node.

Launch SPP CLI
spp > server 3
Switch spp-ctl to "3: 192.168.1.103:7777".

And the result after changed to host3.

spp > server list
1: 192.168.1.101:7777
2: 192.168.1.102:7777
3: 192.168.1.103:7777 *
4: 192.168.1.104:7777

You can also confirm this change by checking IP address of spp-ctl from status command.

spp > status
- spp-ctl:

- address: 192.168.1.103:7777
- primary:

- status: not running
...

4.5. Multiple Nodes 69

Soft Patch Panel Documentation, Release 19.11

4.5.3 Configure Patch Panel Node

First of all of the network configuration, setup blue lines on host1 described in Fig. 4.16. You
should confirm the managed server is host1.

spp > server list
1: 192.168.1.101:7777 *
2: 192.168.1.102:7777
...

Patch two sets of physical ports and start forwarding.

spp > nfv 1; patch phy:1 phy:2
Patch ports (phy:1 -> phy:2).
spp > nfv 1; patch phy:3 phy:0
Patch ports (phy:3 -> phy:0).
spp > nfv 1; forward
Start forwarding.

4.5.4 Configure Service VM Nodes

It is almost similar as Setup Network Configuration in spp_nfv to setup for host2, host3, and
host4.

For host2, swith server to host2 and run nfv commands.

switch to server 2
spp > server 2
Switch spp-ctl to "2: 192.168.1.102:7777".

configure
spp > nfv 1; add vhost:0
Add vhost:0.
spp > nfv 1; patch phy:0 vhost:0
Patch ports (phy:0 -> vhost:0).
spp > nfv 1; patch vhost:0 phy:1
Patch ports (vhost:0 -> phy:1).
spp > nfv 1; forward
Start forwarding.

Then, swith to host3 and host4 for doing the same configuration.

4.5.5 Change Path to Backup Node

Finally, change path from blue lines to red lines.

switch to server 1
spp > server 1
Switch spp-ctl to "1: 192.168.1.101:7777".

remove blue path
spp > nfv 1; stop
Stop forwarding.
spp > nfv 1; patch reset

configure red path

(continues on next page)

4.5. Multiple Nodes 70

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

spp > nfv 2; patch phy:1 phy:4
Patch ports (phy:1 -> phy:4).
spp > nfv 2; patch phy:5 phy:0
Patch ports (phy:5 -> phy:0).
spp > nfv 2; forward
Start forwarding.

4.6 Hardware Offload

SPP provides hardware offload functions.

Note: We tested following use cases at Connect-X 5 by Mellanox only. Even if you cannot
use these use cases on different NIC, we don’t support.

4.6.1 Hardware Classification

Some hardware provides packet classification function based on L2 mac address. This use
case shows you how to use L2 classification.

Setup

Before using hardware packet classification, you must setup number of queues in hardware.

In bin/config.sh.

PRI_PORT_QUEUE=(
"0 rxq 10 txq 10"
"1 rxq 16 txq 16"

)

Above example includes the line 0 rxq 10 txq 10. 0 of this line specifies physical port
number, rxq 10 is for 10 rx-queues, txq 10 is for 10 tx-queues.

You should uncomment the following block in bin/config.sh to indicate hardware white list.
The option dv_flow_en=1 is for MLX5 poll mode driver.

PRI_WHITE_LIST=(
"0000:04:00.0,dv_flow_en=1"
"0000:05:00.0"

)

After editing bin/config.sh, you can launch SPP as following.

$ bin/start.sh
Start spp-ctl
Start spp_primary
Waiting for spp_primary is ready OK! (8.5[sec])
Welcome to the SPP CLI. Type `help` or `?` to list commands.
spp >

4.6. Hardware Offload 71

Soft Patch Panel Documentation, Release 19.11

Then, you can launch spp_vf like this.

spp > pri; launch vf 1 -l 2,3,4,5 -m 512 --file-prefix spp \
-- --client-id 1 -s 127.0.0.1:6666
...

Configuration

Before configure the flow of classifying packets, you can validate such rules by using flow
validate command.

spp > pri; flow validate phy:0 ingress pattern eth dst is \
10:22:33:44:55:66 / end actions queue index 1 / end
spp > pri; flow validate phy:0 ingress pattern eth dst is \
10:22:33:44:55:67 / end actions queue index 2 / end

Then, you can configure flow using flow create command like this.

spp > pri; flow create phy:0 ingress pattern eth dst is \
10:22:33:44:55:66 / end actions queue index 1 / end
spp > pri; flow create phy:0 ingress pattern eth dst is \
10:22:33:44:55:67 / end actions queue index 2 / end

You can confirm created flows by using flow list or flow status commands. flow
list command provides the flow information of specified physical port.

spp > pri; flow list phy:0
ID Group Prio Attr Rule
0 0 0 i-- ETH => QUEUE
1 0 0 i-- ETH => QUEUE

To get detailed information for specific rule. The following example shows the case where
showing detailed information for rule ID 0 of phy:0.

spp > pri; flow status phy:0 0
Attribute:

Group Priority Ingress Egress Transfer
0 0 true false false

Patterns:
- eth:
- spec:

- dst: 10:22:33:44:55:66
- src: 00:00:00:00:00:00
- type: 0x0000

- last:
- mask:

- dst: FF:FF:FF:FF:FF:FF
- src: 00:00:00:00:00:00
- type: 0x0000

Actions:
- queue:

- index: 1
spp >

In this use case, two components fwd1 and fwd2 simply forward the packet to multi-tx queues.
You can start these components like this.

4.6. Hardware Offload 72

Soft Patch Panel Documentation, Release 19.11

spp > vf 1; component start fwd1 2 forward
spp > vf 1; component start fwd2 3 forward

For each fwd1 and fwd2, configure the rx port like this.

spp > vf 1; port add phy:0 nq 1 rx fwd1
spp > vf 1; port add phy:0 nq 2 rx fwd2

Then, you can configure tx ports like this.

spp > vf 1; port add phy:1 nq 1 tx fwd1
spp > vf 1; port add phy:1 nq 2 tx fwd2

For confirming above configuration, you can use ping and tcpdump as described in Classify
ICMP Packets.

Also, when you destroy the flow created above, commands will be like the following.

spp > pri; flow destroy phy:0 0
spp > pri; flow destroy phy:0 1

Or you can destroy all rules on specific hardware by using flow destroy command with ALL
parameter.

spp > pri; flow destroy phy:0 ALL

4.6.2 Manipulate VLAN tag

Some hardware provides VLAN tag manipulation function. This use case shows you the case
where incoming VLAN tagged packet detagged and non-tagged packet tagged when outgoing
using hardware offload function.

After having done above use case, you can continue to following. In this use case, we
are assuming incoming packets which includes vid=100 to phy:0, these vid will be re-
moved(detagged) and transferred to fwd1. Tx packets from fwd1 are sent to queue#0 on
phy:1 with tagged by vid=100. Packets which includes vid=200 to phy:0 are to be sent to
fwd2 with removing the vid, Tx packets from fwd2 are sent to queue#1 on phy:1 with tagged
by vid=200.

For detagging flow creation.

spp > pri; flow create phy:0 ingress group 1 pattern eth dst is \
10:22:33:44:55:66 / vlan vid is 100 / end actions queue index 1 \
/ of_pop_vlan / end
spp > pri; flow create phy:0 ingress group 1 pattern eth dst is \
10:22:33:44:55:67 / vlan vid is 200 / end actions queue index 2 \
/ of_pop_vlan / end
spp > pri; flow create phy:0 ingress group 0 pattern eth / end \
actions jump group 1 / end

For tagging flow creation.

4.6. Hardware Offload 73

Soft Patch Panel Documentation, Release 19.11

spp > pri; flow create phy:1 egress group 1 pattern eth dst is \
10:22:33:44:55:66 / end actions of_push_vlan ethertype 0x8100 \
/ of_set_vlan_vid vlan_vid 100 / of_set_vlan_pcp vlan_pcp 3 / end
spp > pri; flow create phy:1 egress group 1 pattern eth dst is \
10:22:33:44:55:67 / end actions of_push_vlan ethertype 0x8100 \
/ of_set_vlan_vid vlan_vid 200 / of_set_vlan_pcp vlan_pcp 3 / end
spp > pri; flow create phy:1 egress group 0 pattern eth / end \
actions jump group 1 / end

If you want to send vlan-tagged packets, the NIC connected to phy:0 will be configured by
following.

$ sudo ip l add link ens0 name ens0.100 type vlan id 100
$ sudo ip l add link ens0 name ens0.200 type vlan id 200
$ sudo ip a add 192.168.140.1/24 dev ens0.100
$ sudo ip a add 192.168.150.1/24 dev ens0.100
$ sudo ip l set ens0.100 up
$ sudo ip l set ens0.200 up

4.6.3 Connecting with VMs

This use case shows you how to configure hardware offload and VMs.

First, we should clean up flows and delete ports.

spp > vf 1; port del phy:0 nq 0 rx fwd1
spp > vf 1; port del phy:0 nq 1 rx fwd2
spp > vf 1; port del phy:1 nq 0 tx fwd1
spp > vf 1; port del phy:1 nq 1 tx fwd2
spp > pri; flow destroy phy:0 ALL
spp > pri; flow destroy phy:1 ALL

Configure flows.

spp > pri; flow create phy:0 ingress group 1 pattern eth dst is \
10:22:33:44:55:66 / vlan vid is 100 / end actions queue index 1 \
/ of_pop_vlan / end
spp > pri; flow create phy:0 ingress group 1 pattern eth dst is \
10:22:33:44:55:67 / vlan vid is 200 / end actions queue index 2 \
/ of_pop_vlan / end
spp > pri; flow create phy:0 ingress group 0 pattern eth / end \
actions jump group 1 / end
spp > pri; flow create phy:0 egress group 1 pattern eth src is \
10:22:33:44:55:66 / end actions of_push_vlan ethertype 0x8100 \
/ of_set_vlan_vid vlan_vid 100 / of_set_vlan_pcp vlan_pcp 3 / end
spp > pri; flow create phy:0 egress group 1 pattern eth src is \
10:22:33:44:55:67 / end actions of_push_vlan ethertype 0x8100 \
/ of_set_vlan_vid vlan_vid 200 / of_set_vlan_pcp vlan_pcp 3 / end
spp > pri; flow create phy:0 egress group 0 pattern eth / end \
actions jump group 1 / end

Start components.

spp > vf 1; component start fwd3 4 forward
spp > vf 1; component start fwd4 5 forward

Start and setup two VMs as described in SSH Login to VMs. Add ports to forwarders.

4.6. Hardware Offload 74

Soft Patch Panel Documentation, Release 19.11

spp > vf 1; port add phy:0 nq 1 rx fwd1
spp > vf 1; port add vhost:0 tx fwd1
spp > vf 1; port add phy:0 nq 2 rx fwd2
spp > vf 1; port add vhost:1 tx fwd2
spp > vf 1; port add vhost:0 rx fwd3
spp > vf 1; port add phy:0 nq 3 tx fwd3
spp > vf 1; port add vhost:1 rx fwd4
spp > vf 1; port add phy:0 nq 4 tx fwd4

Then you can login to each VMs.

Note that you must add arp entries of MAC addresses statically to be resolved.

terminal 1 on remote host
set MAC address
$ sudo arp -i ens0 -s 192.168.140.31 10:22:33:44:55:66
$ sudo arp -i ens0 -s 192.168.150.32 10:22:33:44:55:67

4.6.4 Reference

The following features are tested.

MT27710 Family [ConnectX-4 Lx] 1015 - dstMAC - dstMAC(range)

MT27800 Family [ConnectX-5] 1017 - dstMAC - dstMAC(range) - vlan vid - vlan vid+dstMAC -
tagging+detagging

Ethernet Controller XXV710 for 25GbE SFP28 158b - dstMAC

4.7 Pipe PMD

Pipe PMD constitutes a virtual Ethernet device (named spp_pipe) using rings which the
spp_primary allocated.

It is necessary for the DPDK application using spp_pipe to implement it as the secondary
process under the spp_primary as the primary process.

Using spp_pipe enables high-speed packet transfer through rings among DPDK applications
using spp_pipe and SPP secondary processes such as spp_nfv and spp_vf.

4.7.1 Using pipe PMD

Create a pipe port by requesting to the spp_primary to use spp_pipe beforehand. There are
CLI and REST API to create a pipe port. A ring used for rx transfer and a ring used for tx
transfer are specified at a pipe port creation.

For example creating pipe:0 with ring:0 for rx and ring:1 for tx by CLI as follows.

spp > pri; add pipe:0 ring:0 ring:1

The name as the Ethernet device of pipe:N is spp_pipeN. DPDK application which
is the secondary process of the spp_primary can get the port id of the device using
rte_eth_dev_get_port_by_name.

4.7. Pipe PMD 75

Soft Patch Panel Documentation, Release 19.11

Requirement of DPDK application using spp_pipe

It is necessary to use the common mbuf mempool of the SPP processes.

#define PKTMBUF_POOL_NAME "Mproc_pktmbuf_pool"

struct rte_mempool *mbuf_pool;

mbuf_pool = rte_mempool_lookup(PKTBBUF_POOL_NAME);

4.7.2 Use cases

Here are some examples using spp_pipe.

Note: A ring allocated by the spp_primary assumes it is single producer and single consumer.
It is user responsibility that each ring in the model has single producer and single consumer.

Direct communication between applications

To create pipe ports by CLI before running applications as follows.

spp > pri; add pipe:0 ring:0 ring:1
spp > pri; add pipe:1 ring:1 ring:0

Fixed application chain using spp_nfv

To construct the model by CLI before running applications as follows.

spp > pri; add pipe:0 ring:0 ring:1
spp > pri; add pipe:1 ring:1 ring:2
spp > nfv 1; add ring:0
spp > nfv 1; patch phy:0 ring:0
spp > nfv 1; forward
spp > nfv 2; add ring:2
spp > nfv 2; patch ring:2 phy:1
spp > nfv 2; forward

Service function chaining using spp_vf

To construct the model by CLI before running applications as follows.

spp > pri; add pipe:0 ring:0 ring:1
spp > pri; add pipe:1 ring:2 ring:3
spp > pri; add pipe:2 ring:4 ring:5
spp > vf 1; component start fwd1 2 forward
spp > vf 1; component start fwd2 3 forward

(continues on next page)

4.7. Pipe PMD 76

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

spp > vf 1; component start fwd3 4 forward
spp > vf 1; component start fwd4 5 forward
spp > vf 1; port add phy:0 rx fwd1
spp > vf 1; port add ring:0 tx fwd1
spp > vf 1; port add ring:1 rx fwd2
spp > vf 1; port add ring:2 tx fwd2
spp > vf 1; port add ring:3 rx fwd3
spp > vf 1; port add ring:4 tx fwd3
spp > vf 1; port add ring:5 rx fwd4
spp > vf 1; port add phy:1 tx fwd4

Since applications are connected not directly but through spp_vf, service chaining can be
modified without restarting applications.

4.7. Pipe PMD 77

CHAPTER 5

SPP Commands

SPP provides commands for managing primary, secondary processes and SPP controller.

5.1 Primary Commands

Primary process is managed with pri command.

pri command takes a sub command. They must be separated with delimiter ;. Some of sub
commands take additional arguments.

spp > pri; SUB_CMD

All of Sub commands are referred with help command.

spp > help pri
Send a command to primary process.

Show resources and statistics, or clear it.

spp > pri; status # show status

spp > pri; clear # clear statistics

Launch secondary process..

Launch nfv:1
spp > pri; launch nfv 1 -l 1,2 -m 512 -- -n 1 -s 192.168....

Launch vf:2
spp > pri; launch vf 2 -l 1,4-7 -m 512 -- --client-id 2 -s ...

5.1.1 status

Show status fo spp_primary and forwarding statistics of each of ports.

78

Soft Patch Panel Documentation, Release 19.11

spp > pri; status
- lcore_ids:

- master: 0
- pipes:

- pipe:0 ring:0 ring:1
- stats

- physical ports:
ID rx tx tx_drop rxq txq mac_addr
0 0 0 0 16 16 3c:fd:fe:b6:c4:28
1 0 0 0 1024 1024 3c:fd:fe:b6:c4:29
2 0 0 0 1 1 3c:fd:fe:b6:c4:30

- ring ports:
ID rx tx rx_drop tx_drop
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
...

If you run spp_primary with forwarder thread, status of the forwarder is also displayed.

spp > pri; status
- lcore_ids:

- master: 0
- slave: 1

- forwarder:
- status: idling
- ports:
- phy:0
- phy:1

- pipes:
- stats

- physical ports:
ID rx tx tx_drop mac_addr
0 0 0 0 56:48:4f:53:54:00
1 0 0 0 56:48:4f:53:54:01

- ring ports:
ID rx tx rx_drop tx_drop
0 0 0 0 0
1 0 0 0 0
...

5.1.2 clear

Clear statistics.

spp > pri; clear
Clear port statistics.

5.1.3 add

Add a port with resource ID.

If the type of a port is other than pipe, specify port only. For example, adding ring:0 by

spp > pri; add ring:0
Add ring:0.

Or adding vhost:0 by

5.1. Primary Commands 79

Soft Patch Panel Documentation, Release 19.11

spp > pri; add vhost:0
Add vhost:0.

If the type of a port is pipe, specify a ring for rx and a ring for tx following a port. For example,

spp > pri; add pipe:0 ring:0 ring:1
Add pipe:0.

Note: pipe is independent of the forwarder and can be added even if the forwarder does not
exist.

5.1.4 patch

Create a path between two ports, source and destination ports. This command just creates a
path and does not start forwarding.

spp > pri; patch phy:0 ring:0
Patch ports (phy:0 -> ring:0).

5.1.5 forward

Start forwarding.

spp > pri; forward
Start forwarding.

Running status is changed from idling to running by executing it.

spp > pri; status
- lcore_ids:

- master: 0
- slave: 1

- forwarder:
- status: running
- ports:
- phy:0
- phy:1

...

5.1.6 stop

Stop forwarding.

spp > pri; stop
Stop forwarding.

Running status is changed from running to idling by executing it.

spp > pri; status
- lcore_ids:

- master: 0

(continues on next page)

5.1. Primary Commands 80

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

- slave: 1
- forwarder:

- status: idling
- ports:
- phy:0
- phy:1

...

5.1.7 del

Delete a port of given resource UID.

spp > pri; del ring:0
Delete ring:0.

5.1.8 launch

Launch a secondary process.

Spp_primary is able to launch a secondary process with given type, secondary ID and options
of EAL and application itself. This is a list of supported type of secondary processes.

• nfv

• vf

• mirror

• pcap

spp_nfv with sec ID 1
spp > pri; launch nfv 1 -l 1,2 -m 512 -- -n -s 192.168.1.100:6666

spp_vf with sec ID 2
spp > pri; launch vf 2 -l 1,3-5 -m 512 -- --client-id -s 192.168.1.100:6666

You notice that --proc-type secondary is not given for launching secondary processes.
launch command adds this option before requesting to launch the process so that you do not
need to input this option by yourself.

launch command supports TAB completion for type, secondary ID and the rest of options.
Some of EAL and application options are just a template, so you should edit them before
launching. Some of default params of options, for instance, the number of lcores or the amount
of memory, are changed from config command of Common Commands.

In terms of log, each of secondary processes are output its log messages to files under log
directory of project root. The name of log file is defined with type of process and secondary ID.
For instance, nfv 2, the path of log file is log/spp_nfv-2.log.

5.1.9 flow

Manipulate flow rules.

You can request validate before creating flow rule.

5.1. Primary Commands 81

Soft Patch Panel Documentation, Release 19.11

spp > pri; flow validate phy:0 ingress group 1 pattern eth dst is
10:22:33:44:55:66 / vlan vid is 100 / end actions queue index 0 /
of_pop_vlan / end

Flow rule validated

You can create rules by using create request.

spp > pri; flow create phy:0 ingress group 1 pattern eth dst is
10:22:33:44:55:66 / vlan vid is 100 / end actions queue index 0 /
of_pop_vlan / end

Flow rule #0 created

Note: validate and/or create in flow command tends to take long parameters. But you
should enter it as one line. CLI assumes that new line means command is entered. So
command should be entered without using new line.

You can delete specific flow rule.

spp > pri; flow destroy phy:0 0
Flow rule #0 destroyed

Listing flow rules per physical port is supported.

spp > pri; flow list phy:0
ID Group Prio Attr Rule
0 1 0 -e- ETH => OF_PUSH_VLAN OF_SET_VLAN_VID OF_SET_VLAN_PCP
1 1 0 i-- ETH VLAN => QUEUE OF_POP_VLAN
2 0 0 i-- ETH => JUMP

The following is the parameters to be displayed.

• ID: Identifier of the rule which is unique per physical port.

• Group: Group number the rule belongs.

• Prio: Priority value of the rule.

• Attr: Attributes for the rule which is independent each other. The possible values of
Attr are i or e or t. i means ingress. e means egress and t means transfer.

• Rule: Rule notation.

Flow detail can be listed.

spp > pri; flow status phy:0 0
Attribute:

Group Priority Ingress Egress Transfer
1 0 true false false

Patterns:
- eth:
- spec:

- dst: 10:22:33:44:55:66
- src: 00:00:00:00:00:00
- type: 0xffff

- last:
- mask:

- dst: ff:ff:ff:ff:ff:ff
- src: 00:00:00:00:00:00

(continues on next page)

5.1. Primary Commands 82

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

- type: 0xffff
- vlan:
- spec:

- tci: 0x0064
- inner_type: 0x0000

- last:
- mask:

- tci: 0xffff
- inner_type: 0x0000

Actions:
- queue:
- index: 0

- of_pop_vlan:

5.2 Secondary Commands

5.2.1 spp_nfv

Each of spp_nfv and spp_vm processes is managed with nfv command. It is for sending
sub commands to secondary with specific ID called secondary ID.

nfv command takes an secondary ID and a sub command. They must be separated with
delimiter ;. Some of sub commands take additional arguments for speicfying resource owned
by secondary process.

spp > nfv SEC_ID; SUB_CMD

All of Sub commands are referred with help command.

spp > help nfv

Send a command to secondary process specified with ID.

SPP secondary process is specified with secondary ID and takes
sub commands.

spp > nfv 1; status
spp > nfv 1; add ring:0
spp > nfv 1; patch phy:0 ring:0

You can refer all of sub commands by pressing TAB after
'nfv 1;'.

spp > nfv 1; # press TAB
add del exit forward patch status stop

status

Show running status and ports assigned to the process. If a port is patched to other port,
source and destination ports are shown, or only source if it is not patched.

spp > nfv 1; status
- status: idling

(continues on next page)

5.2. Secondary Commands 83

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

- lcores: [1, 2]
- ports:

- phy:0 -> ring:0
- phy:1

add

Add a port to the secondary with resource ID.

For example, adding ring:0 by

spp > nfv 1; add ring:0
Add ring:0.

Or adding vhost:0 by

spp > nfv 1; add vhost:0
Add vhost:0.

patch

Create a path between two ports, source and destination ports. This command just creates a
path and does not start forwarding.

spp > nfv 1; patch phy:0 ring:0
Patch ports (phy:0 -> ring:0).

forward

Start forwarding.

spp > nfv 1; forward
Start forwarding.

Running status is changed from idling to running by executing it.

spp > nfv 1; status
- status: running
- ports:

- phy:0
- phy:1

stop

Stop forwarding.

spp > nfv 1; stop
Stop forwarding.

Running status is changed from running to idling by executing it.

5.2. Secondary Commands 84

Soft Patch Panel Documentation, Release 19.11

spp > nfv 1; status
- status: idling
- ports:

- phy:0
- phy:1

del

Delete a port from the secondary.

spp > nfv 1; del ring:0
Delete ring:0.

exit

Terminate the secondary. For terminating all secondaries, use bye sec command instead of
it.

spp > nfv 1; exit

5.2.2 spp_vf

spp_vf is a kind of SPP secondary process. It is introduced for providing SR-IOV like features.

Each of spp_vf processes is managed with vf command. It is for sending sub commands with
specific ID called secondary ID for changing configuration, assigning or releasing resources.

Secondary ID is referred as --client-id which is given as an argument while launching
spp_vf. It should be unique among all of secondary processes including spp_nfv and others.

vf command takes an secondary ID and one of sub commands. Secondary ID and sub com-
mand should be separated with delimiter ;, or failed to a command error. Some of sub com-
mands take additional arguments for configuration of the process or its resource management.

spp > vf SEC_ID; SUB_CMD

In this example, SEC_ID is a secondary ID and SUB_CMD is one of the following sub com-
mands. Details of each of sub commands are described in the next sections.

• status

• component

• port

• classifier_table

spp_vf supports TAB completion. You can complete all of the name of commands and its
arguments. For instance, you find all of sub commands by pressing TAB after vf SEC_ID;.

spp > vf 1; # press TAB key
classifier_table component port status

5.2. Secondary Commands 85

Soft Patch Panel Documentation, Release 19.11

It tries to complete all of possible arguments. However, spp_vf takes also an arbitrary pa-
rameter which cannot be predicted, for example, name of component MAC address. In this
cases, spp_vf shows capitalized keyword for indicating it is an arbitrary parameter. Here is
an exmaple of component command to initialize a worker thread. Keyword NAME should be
replaced with your favorite name for the worker of the role.

spp > vf 1; component st # press TAB key to show args starting 'st'
start stop
spp > vf 1; component start NAME # 'NAME' is shown with TAB after start
spp > vf 1; component start fw1 # replace 'NAME' with your favorite name
spp > vf 1; component start fw1 # then, press TAB to show core IDs
5 6 7 8

It is another example of replacing keyword. port is a sub command for assigning a resource
to a worker thread. RES_UID is replaced with resource UID which is a combination of port type
and its ID such as ring:0 or vhost:1 to assign it as RX port of forwarder fw1.

spp > vf 1; port add RES_UID
spp > vf 1; port add ring:0 rx fw1

If you are reached to the end of arguments, no candidate keyword is displayed. It is a com-
pleted statement of component command, and TAB completion does not work after forward
because it is ready to run.

spp > vf 1; component start fw1 5 forward
Succeeded to start component 'fw1' on core:5

It is also completed secondary IDs of spp_vf and it is helpful if you run several spp_vf
processes.

spp > vf # press TAB after space following 'vf'
1; 3; # you find two spp_vf processes of sec ID 1, 3

By the way, it is also a case of no candidate keyword is displayed if your command statement
is wrong. You might be encountered an error if you run the wrong command. Please take care.

spp > vf 1; compo # no candidate shown for wrong command
Invalid command "compo".

status

Show the information of worker threads and its resources. Status information consists of three
parts.

spp > vf 1; status
Basic Information:
- client-id: 1
- ports: [phy:0 nq 0, phy:0 nq 1, ring:0, ring:1, ring:2]
- lcore_ids:
- master: 1
- slaves: [2, 3 ,4, 5]

Classifier Table:
- C0:8E:CD:38:EA:A8, ring:1
- C0:8E:CD:38:BC:E6, ring:2

Components:
- core:2 'fwd1' (type: forward)

(continues on next page)

5.2. Secondary Commands 86

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

- rx: phy:0 nq 0
- tx: ring:0

- core:3 'mg' (type: merge)
- core:4 'cls' (type: classifier)
- rx: phy:0 nq 1
- tx: ring:1
- tx: ring:2

- core:5 '' (type: unuse)

Basic Information is for describing attributes of spp_vf itself. client-id is a secondary
ID of the process and ports is a list of all of ports owned the process.

Classifier Table is a list of entries of classifier worker thread. Each of entry is a
combination of MAC address and destination port which is assigned to this thread.

Components is a list of all of worker threads. Each of workers has a core ID running on, type
of the worker and a list of resources. Entry of no name with unuse type means that no worker
thread assigned to the core. In other words, it is ready to be assigned.

component

Assign or release a role of forwarding to worker threads running on each of cores which are
reserved with -c or -l option while launching spp_vf. The role of the worker is chosen from
forward, merge or classifier.

forward role is for simply forwarding from source port to destination port. On the other hands,
merge role is for receiving packets from multiple ports as N:1 communication, or classifier
role is for sending packet to multiple ports by referring MAC address as 1:N communication.

You are required to give an arbitrary name with as an ID for specifying the role. This name is
also used while releasing the role.

assign 'ROLE' to worker on 'CORE_ID' with a 'NAME'
spp > vf SEC_ID; component start NAME CORE_ID ROLE

release worker 'NAME' from the role
spp > vf SEC_ID; component stop NAME

Here are some examples of assigning roles with component command.

assign 'forward' role with name 'fw1' on core 2
spp > vf 2; component start fw1 2 forward

assign 'merge' role with name 'mgr1' on core 3
spp > vf 2; component start mgr1 3 merge

assign 'classifier' role with name 'cls1' on core 4
spp > vf 2; component start cls1 4 classifier

In the above examples, each different CORE-ID is specified to each role. You can assign sev-
eral components on the same core, but performance might be decreased. This is an example
for assigning two roles of forward and merge on the same core 2.

assign two roles on the same 'core 2'.
spp > vf 2; component start fw1 2 forward
spp > vf 2; component start mgr1 2 merge

5.2. Secondary Commands 87

Soft Patch Panel Documentation, Release 19.11

Examples of releasing roles.

release roles
spp > vf 2; component stop fw1
spp > vf 2; component stop mgr1
spp > vf 2; component stop cls1

port

Add or delete a port to a worker.

Adding port

spp > vf SEC_ID; port add RES_UID [nq QUEUE_NUM] DIR NAME

RES_UID is with replaced with resource UID such as ring:0 or vhost:1. spp_vf supports
three types of port. nq QUEUE_NUM is the queue number when multi-queue is configured. This
is optional parameter.

• phy : Physical NIC

• ring : Ring PMD

• vhost : Vhost PMD

DIR means the direction of forwarding and it should be rx or tx. NAME is the same as for
component command.

This is an example for adding ports to a classifer cls1. In this case, it is configured to re-
ceive packets from phy:0 and send it to ring:0 or ring:1. The destination is decided with
MAC address of the packets by referring the table. How to configure the table is described in
classifier_table command.

recieve from 'phy:0'
spp > vf 2; port add phy:0 rx cls1

receive from queue 1 of 'phy:0'
spp > vf 2; port add phy:0 nq 1 rx cls1

send to 'ring:0' and 'ring:1'
spp > vf 2; port add ring:0 tx cls1
spp > vf 2; port add ring:1 tx cls1

spp_vf also supports VLAN features, adding or deleting VLAN tag. It is used remove VLAN
tags from incoming packets from outside of host machine, or add VLAN tag to outgoing pack-
ets.

To configure VLAN features, use additional sub command add_vlantag or del_vlantag
followed by port sub command.

To remove VLAN tag, simply add del_vlantag sub command without arguments.

spp > vf SEC_ID; port add RES_UID [nq QUEUE_NUM] DIR NAME del_vlantag

On the other hand, use add_vlantag which takes two arguments, VID and PCP, for adding
VLAN tag to the packets.

5.2. Secondary Commands 88

Soft Patch Panel Documentation, Release 19.11

spp > vf SEC_ID; port add RES_UID [nq QUEUE_NUM] DIR NAME add_vlantag VID PCP

VID is a VLAN ID and PCP is a Priority Code Point defined in IEEE 802.1p. It is used for QoS
by defining priority ranged from lowest prioroty 0 to the highest 7.

Here is an example of use of VLAN features considering a use case of a forwarder removes
VLAN tag from incoming packets and another forwarder adds VLAN tag before sending packet
outside.

remove VLAN tag in forwarder 'fw1'
spp > vf 2; port add phy:0 rx fw1 del_vlantag

add VLAN tag with VLAN ID and PCP in forwarder 'fw2'
spp > vf 2; port add phy:1 tx fw2 add_vlantag 101 3

Adding port may cause component to start packet forwarding. Please see detail in design
spp_vf .

Until one rx port and one tx port are added, forwarder does not start packet forwarding. If it
is requested to add more than one rx and one tx port, it replies an error message. Until at
least one rx port and two tx ports are added, classifier does not start packet forwarding. If it is
requested to add more than two rx ports, it replies an error message. Until at least two rx ports
and one tx port are added, merger does not start packet forwarding. If it is requested to add
more than two tx ports, it replies an error message.

Deleting port

Delete a port which is not used anymore.

spp > vf SEC_ID; port del RES_UID [nq QUEUE_NUM] DIR NAME

It is same as the adding port, but no need to add additional sub command for VLAN features.

Here is an example.

delete rx port 'ring:0' from 'cls1'
spp > vf 2; port del ring:0 rx cls1

delete rx port queue 1 of 'phy:0' from 'cls1'
spp > vf 2; port del phy:0 nq 1 rx cls1

delete tx port 'vhost:1' from 'mgr1'
spp > vf 2; port del vhost:1 tx mgr1

Note: Deleting port may cause component to stop packet forwarding. Please see detail in
design spp_vf .

classifier_table

Register an entry of a combination of MAC address and port to a table of classifier.

5.2. Secondary Commands 89

https://1.ieee802.org/

Soft Patch Panel Documentation, Release 19.11

add entry
spp > vf SEC_ID; classifier_table add mac MAC_ADDR RES_UID

delete entry
spp > vf SEC_ID; classifier_table del mac MAC_ADDRESS RES_ID

add entry with multi-queue support
spp > vf SEC_ID; classifier_table add mac MAC_ADDR RES_UID [nq QUEUE_NUM]

delete entry with multi-queue support
spp > vf SEC_ID; classifier_table del mac MAC_ADDRESS RES_ID [nq QUEUE_NUM]

This is an example to register MAC address 52:54:00:01:00:01 with port ring:0.

spp > vf 1; classifier_table add mac 52:54:00:01:00:01 ring:0

Classifier supports the default entry for packets which does not match any of entries in the
table. If you assign ring:1 as default, simply specify default instead of MAC address.

spp > vf 1; classifier_table add mac default ring:1

classifier_table sub command also supports VLAN features as similar to port.

add entry with VLAN features
spp > vf SEC_ID; classifier_table add vlan VID MAC_ADDR RES_UID

delete entry of VLAN
spp > vf SEC_ID; classifier_table del vlan VID MAC_ADDR RES_UID

Here is an example for adding entries.

add entry with VLAN tag
spp > vf 1; classifier_table add vlan 101 52:54:00:01:00:01 ring:0

add entry of default with VLAN tag
spp > vf 1; classifier_table add vlan 101 default ring:1

Delete an entry. This is an example to delete an entry with VLAN tag 101.

delete entry with VLAN tag
spp > vf 1; classifier_table del vlan 101 52:54:00:01:00:01 ring:0

exit

Terminate the spp_vf.

spp > vf 1; exit

5.2.3 spp_mirror

spp_mirror is an implementation of TaaS feature as a SPP secondary process for port mir-
roring.

Each of spp_mirror processes is managed with mirror command. Because basic design
of spp_mirror is derived from spp_vf, its commands are almost similar to spp_vf.

5.2. Secondary Commands 90

Soft Patch Panel Documentation, Release 19.11

Secondary ID is referred as --client-id which is given as an argument while launching
spp_mirror. It should be unique among all of secondary processes including spp_nfv and
others.

mirror command takes an secondary ID and one of sub commands. Secondary ID and
sub command should be separated with delimiter ;, or failed to a command error. Some
of sub commands take additional arguments for configuration of the process or its resource
management.

spp > mirror SEC_ID; SUB_CMD

In this example, SEC_ID is a secondary ID and SUB_CMD is one of the following sub com-
mands. Details of each of sub commands are described in the next sections.

• status

• component

• port

spp_mirror supports TAB completion. You can complete all of the name of commands and
its arguments. For instance, you find all of sub commands by pressing TAB after mirror
SEC_ID;.

spp > mirror 1; # press TAB key
component port status

It tries to complete all of possible arguments. However, spp_mirror takes also an arbi-
trary parameter which cannot be predicted, for example, name of component. In this cases,
spp_mirror shows capitalized keyword for indicating it is an arbitrary parameter. Here is
an exmaple of component command to initialize a worker thread. Keyword NAME should be
replaced with your favorite name for the worker of the role.

spp > mirror 1; component st # press TAB key to show args starting 'st'
start stop
spp > mirror 1; component start NAME # 'NAME' is shown with TAB after start
spp > mirror 1; component start mr1 # replace 'NAME' with favorite name
spp > mirror 1; component start mr1 # then, press TAB to show core IDs
5 6 7

It is another example of replacing keyword. port is a sub command for assigning a resource
to a worker thread. RES_UID is replaced with resource UID which is a combination of port type
and its ID such as ring:0 or vhost:1 to assign it as RX port of forwarder mr1.

spp > mirror 1; port add RES_UID
spp > mirror 1; port add ring:0 rx mr1

If you are reached to the end of arguments, no candidate keyword is displayed. It is a com-
pleted statement of component command, and TAB completion does not work after mirror
because it is ready to run.

spp > mirror 1; component start mr1 5 mirror
Succeeded to start component 'mr1' on core:5

It is also completed secondary IDs of spp_mirror and it is helpful if you run several
spp_mirror processes.

5.2. Secondary Commands 91

Soft Patch Panel Documentation, Release 19.11

spp > mirror # press TAB after space following 'mirror'
1; 3; # you find two spp_mirror processes of sec ID 1, 3

By the way, it is also a case of no candidate keyword is displayed if your command statement
is wrong. You might be encountered an error if you run the wrong command. Please take care.

spp > mirror 1; compa # no candidate shown for wrong command
Invalid command "compa".

status

Show the information of worker threads and its resources. Status information consists of three
parts.

spp > mirror 1; status
Basic Information:

- client-id: 3
- ports: [phy:0, phy:1, ring:0, ring:1, ring:2, ring:3, ring:4]

- lcore_ids:
- master: 1
- slaves: [2, 3, 4]

Components:
- core:5 'mr1' (type: mirror)
- rx: ring:0
- tx: [ring:1, ring:2]

- core:6 'mr2' (type: mirror)
- rx: ring:3
- tx: [ring:4, ring:5]

- core:7 '' (type: unuse)

Basic Information is for describing attributes of spp_mirror itself. client-id is a
secondary ID of the process and ports is a list of all of ports owned the process.

Components is a list of all of worker threads. Each of workers has a core ID running on, type
of the worker and a list of resources. Entry of no name with unuse type means that no worker
thread assigned to the core. In other words, it is ready to be assinged.

component

Assing or release a role of forwarding to worker threads running on each of cores which are
reserved with -c or -l option while launching spp_mirror. Unlike spp_vf, spp_mirror
only has one role, mirror.

assign 'ROLE' to worker on 'CORE_ID' with a 'NAME'
spp > mirror SEC_ID; component start NAME CORE_ID ROLE

release worker 'NAME' from the role
spp > mirror SEC_ID; component stop NAME

Here is an example of assigning role with component command.

assign 'mirror' role with name 'mr1' on core 2
spp > mirror 2; component start mr1 2 mirror

And an examples of releasing role.

5.2. Secondary Commands 92

Soft Patch Panel Documentation, Release 19.11

release mirror role
spp > mirror 2; component stop mr1

port

Add or delete a port to a worker.

Adding port

spp > mirror SEC_ID; port add RES_UID DIR NAME

RES_UID is with replaced with resource UID such as ring:0 or vhost:1. spp_mirror
supports three types of port.

• phy : Physical NIC

• ring : Ring PMD

• vhost : Vhost PMD

DIR means the direction of forwarding and it should be rx or tx. NAME is the same as for
component command.

This is an example for adding ports to mr1. In this case, it is configured to receive packets from
ring:0 and send it to vhost:0 and vhost:1 by duplicating the packets.

recieve from 'phy:0'
spp > mirror 2; port add ring:0 rx mr1

send to 'ring:0' and 'ring:1'
spp > mirror 2; port add vhost:0 tx mr1
spp > mirror 2; port add vhost:1 tx mr1

Adding port may cause component to start packet forwarding. Please see details in design
spp_mirror .

Until one rx and two tx ports are registered, spp_mirror does not start forwarding. If it is
requested to add more than one rx and two tx ports, it replies an error message.

Deleting port

Delete a port which is not be used anymore. It is almost same as adding port.

spp > mirror SEC_ID; port del RES_UID DIR NAME

Here is some examples.

delete rx port 'ring:0' from 'mr1'
spp > mirror 2; port del ring:0 rx mr1

delete tx port 'vhost:1' from 'mr1'
spp > mirror 2; port del vhost:1 tx mr1

5.2. Secondary Commands 93

Soft Patch Panel Documentation, Release 19.11

Note: Deleting port may cause component to stop packet forwarding. Please see detail in
design spp_mirror .

exit

Terminate spp_mirror process.

spp > mirror 2; exit

5.2.4 spp_pcap

spp_pcap is a kind of SPP secondary process. It it introduced for providing packet capture
features.

Each of spp_pcap processes is managed with pcap command. It is for sending sub com-
mands with specific ID called secondary ID for starting or stopping packet capture.

Secondary ID is referred as --client-id which is given as an argument while launch-
ing spp_pcap. It should be unique among all of secondary processes including spp_nfv,
spp_vm and others.

pcap command takes an secondary ID and one of sub commands. Secondary ID and sub
command should be separated with delimiter ;, or failed to a command error.

spp > pcap SEC_ID; SUB_CMD

In this example, SEC_ID is a secondary ID and SUB_CMD is one of the following sub com-
mands. Details of each of sub commands are described in the next sections.

• status

• start

• stop

• exit

spp_pcap supports TAB completion. You can complete all of the name of commands and its
arguments. For instance, you find all of sub commands by pressing TAB after pcap SEC_ID;.

spp > pcap 1; # press TAB key
exit start status stop

It tries to complete all of possible arguments.

spp > pcap 1; component st # press TAB key to show args starting 'st'
start status stop

If you are reached to the end of arguments, no candidate keyword is displayed. It is a com-
pleted statement of start command, and TAB completion does not work after start because
it is ready to run.

spp > pcap 1; start
Succeeded to start capture

5.2. Secondary Commands 94

Soft Patch Panel Documentation, Release 19.11

It is also completed secondary IDs of spp_pcap and it is helpful if you run several spp_pcap
processes.

spp > pcap # press TAB after space following 'pcap'
1; 3; # you find two spp_pcap processes of sec ID 1, 3

By the way, it is also a case of no candidate keyword is displayed if your command statement
is wrong. You might be encountered an error if you run the wrong command. Please take care.

spp > pcap 1; ste # no candidate shown for wrong command
Invalid command "ste".

status

Show the information of worker threads of receiver and writer threads and its resources.

spp > pcap 1; status
Basic Information:

- client-id: 1
- status: idling
- lcore_ids:
- master: 1
- slaves: [2, 3, 4, 5, 6]

Components:
- core:2 receive
- rx: phy:0

- core:3 write
- filename:

- core:4 write
- filename:

- core:5 write
- filename:

- core:6 write
- filename:

client-id is a secondary ID of the process and status shows running status.

Each of lcore has a role of receive or write. receiver has capture port as input and
write has a capture file as output, but the filename is empty while idling status because
capturing is not started yet.

If you start capturing, you can find each of writer threads has a capture file. After capturing
is stopped, filename is returned to be empty again.

spp > pcap 2; status
- client-id: 2
- status: running
- core:2 receive
- rx: phy:0

- core:3 write
- filename: /tmp/spp_pcap.20190214161550.phy0.1.1.pcap.lz4

- core:4 write
- filename: /tmp/spp_pcap.20190214161550.phy0.2.1.pcap.lz4

- core:5 write
- filename: /tmp/spp_pcap.20190214161550.phy0.3.1.pcap.lz4

- core:6 write
- filename: /tmp/spp_pcap.20190214161550.phy0.4.1.pcap.lz4

5.2. Secondary Commands 95

Soft Patch Panel Documentation, Release 19.11

start

Start packet capture.

start capture
spp > pcap SEC_ID; start

Here is a example of starting capture.

start capture
spp > pcap 1; start
Start packet capture.

stop

Stop packet capture.

stop capture
spp > pcap SEC_ID; stop

Here is a example of stopping capture.

stop capture
spp > pcap 2; stop
Start packet capture.

exit

Terminate the spp_pcap.

spp > pcap 1; exit

5.3 Common Commands

5.3.1 status

Show the status of SPP processes.

spp > status
- spp-ctl:

- address: 172.30.202.151:7777
- primary:

- status: running
- secondary:

- processes:
1: nfv:1
2: vf:3

5.3.2 config

Show or update config params.

5.3. Common Commands 96

Soft Patch Panel Documentation, Release 19.11

Config params used for changing behaviour of SPP CLI. For instance, if you change command
prompt, you can set any of prompt with config command other than default spp >.

set prompt to "$ spp "
spp > config prompt "$ spp "
Set prompt: "$ spp "
$ spp

Show Config

To show the list of config all of params, simply run config.

show list of config
spp > config
- max_secondary: "16" # The maximum number of secondary processes
- sec_nfv_nof_lcores: "1" # Default num of lcores for workers of spp_nfv
- topo_size: "60%" # Percentage or ratio of topo
- sec_base_lcore: "1" # Shared lcore among secondaries
....

Or show params only started from sec_, add the keyword to the commnad.

show config started from `sec_`
spp > config sec_
- sec_vhost_cli: "" # Vhost client mode, activated if set any of values
- sec_mem: "-m 512" # Mem size
- sec_nfv_nof_lcores: "1" # Default num of lcores for workers of spp_nfv
- sec_base_lcore: "1" # Shared lcore among secondaryes
....

Set Config

One of typical uses of config command is to change the default params of other commands.
pri; launch takes several options for launching secondary process and it is completed by
using default params started from sec_.

spp > pri; launch nfv 2 # press TAB for completion
spp > pri; launch nfv 2 -l 1,2 -m 512 -- -n 2 -s 192.168.11.59:6666

The default number of memory size is -m 512 and the definition sec_mem can be changed
with config command. Here is an example of changing -m 512 to --socket-mem 512,0.

spp > config sec_mem "--socket-mem 512,0"
Set sec_mem: "--socket-mem 512,0"

After updating the param, expanded options is also updated.

spp > pri; launch nfv 2 # press TAB for completion
spp > pri; launch nfv 2 -l 1,2 --socket-mem 512,0 -- -n 2 -s ...

5.3.3 playback

Restore network configuration from a recipe file which defines a set of SPP commands. You
can prepare a recipe file by using record command or editing file by hand.

5.3. Common Commands 97

Soft Patch Panel Documentation, Release 19.11

It is recommended to use extension .rcp to be self-sxplanatory as a recipe, although you can
use any of extensions such as .txt or .log.

spp > playback /path/to/my.rcp

5.3.4 record

Start recording user’s input and create a recipe file for loading from playback commnad.
Recording recipe is stopped by executing exit or playback command.

spp > record /path/to/my.rcp

Note: It is not supported to stop recording without exit or playback command. It is planned
to support stop command for stopping record in next relase.

5.3.5 history

Show command history. Command history is recorded in a file named $HOME/.
spp_history. It does not add some command which are no meaning for history, bye, exit,
history and redo.

spp > history
1 ls
2 cat file.txt

5.3.6 redo

Execute command of index of history.

spp > redo 5 # exec 5th command in the history

5.3.7 server

Switch SPP REST API server.

SPP CLI is able to manage several SPP nodes via REST API servers. It is also abaivable to
register new one, or unregister.

Show all of registered servers by running server list or simply server. Notice that *
means that the first node is under the control of SPP CLI.

spp > server
1: 192.168.1.101:7777 *
2: 192.168.1.102:7777

spp > server list # same as above
1: 192.168.1.101:7777 *
2: 192.168.1.102:7777

5.3. Common Commands 98

Soft Patch Panel Documentation, Release 19.11

Switch to other server by running server with index or address displayed in the list. Port
number can be omitted if it is default 7777.

Switch to the second node
spp > server 2
Switch spp-ctl to "2: 192.168.1.102:7777".

Switch to firt one again with address
spp > server 192.168.1.101 # no need for port num
Switch spp-ctl to "1: 192.168.1.101:7777".

Register new one by using add command, or unregister by del command with address. For
unregistering, node is also specified with index.

Register
spp > server add 192.168.122.177
Registered spp-ctl "192.168.122.177:7777".

Unregister second one
spp > server del 2 # or 192.168.1.102
Unregistered spp-ctl "192.168.1.102:7777".

You cannot unregister node under the control, or switch to other one before.

spp > server del 1
Cannot del server "1" in use!

5.3.8 env

Show environmental variables. It is mainly used to find variables related to SPP.

show all env varibles.
spp > env

show env varibles starts with `SPP`.
spp > env SPP

5.3.9 pwd

Show current path.

spp> pwd
/path/to/curdir

5.3.10 cd

Change current directory.

spp> cd /path/to/dir

5.3.11 ls

Show a list of directory contents.

5.3. Common Commands 99

Soft Patch Panel Documentation, Release 19.11

spp> ls /path/to/dir

5.3.12 mkdir

Make a directory.

spp> mkdir /path/to/dir

5.3.13 cat

Show contents of a file.

spp> cat /path/to/file

5.3.14 less

Show contents of a file.

spp> less /path/to/file

5.3.15 bye

bye command is for terminating SPP processes. It supports two types of termination as sub
commands.

• sec

• all

First one is for terminating only secondary processes at once.

spp > bye sec
Closing secondary ...
Exit nfv 1
Exit vf 3.

Second one is for all SPP processes other than controller.

spp > bye all
Closing secondary ...
Exit nfv 1
Exit vf 3.
Closing primary ...
Exit primary

5.3.16 exit

Same as bye command but just for terminating SPP controller and not for other processes.

5.3. Common Commands 100

Soft Patch Panel Documentation, Release 19.11

spp > exit
Thank you for using Soft Patch Panel

5.3.17 help

Show help message for SPP commands.

spp > help

Documented commands (type help <topic>):
==
bye exit inspect ls nfv pwd server topo_resize
cat help less mirror playback record status topo_subgraph
cd history load_cmd mkdir pri redo topo vf

spp > help status
Display status info of SPP processes

spp > status

spp > help nfv
Send a command to spp_nfv specified with ID.

Spp_nfv is specified with secondary ID and takes sub commands.

spp > nfv 1; status
spp > nfv 1; add ring:0
spp > nfv 1; patch phy:0 ring:0

You can refer all of sub commands by pressing TAB after
'nfv 1;'.

spp > nfv 1; # press TAB
add del exit forward patch status stop

5.4 Experimental Commands

There are experimental commands in SPP controller. It might not work for some cases properly
because it is not well tested currently.

5.4.1 topo

Output network topology in several formats. Support four types of output.

• Terminal

• Browser (websocket server is required)

• Text (dot, json, yaml)

• Image file (jpg, png, bmp)

This command uses graphviz for generating topology file. You can also generate a dot format-
ted file or image files supported by graphviz.

5.4. Experimental Commands 101

https://www.graphviz.org/

Soft Patch Panel Documentation, Release 19.11

Here is an example for installing required tools for topo term command to output in a termi-
nal.

$ sudo apt install graphviz \
imagemagick \
libsixel-bin

MacOS is also supported optionally for using topo runs on a remote host. In this case, iTerm2
and imgcat are required as described in the next section.

To output in browser with topo http command, install required packages by using
requirements.txt as described in install SPP, or only for them as follwoing.

$ pip3 install tornado \
websocket-client

Output to Terminal

Output an image of network configuration in terminal.

spp > topo term

There are few terminal applications supporting to output image with topo. You can use mlterm,
xterm or other terminals supported by img2sixel. You can also use iTerm2 on MacOS. If you
use iTerm2, you need to downloada a shell script imgcat from iTerm2’s displaying support site
and save this script as src/controller/3rd_party/imgcat with permission 775. topo
command tries to img2sixel first, then imgcat in the 3rd_party directory.

Fig. 5.1: topo term example

Output to Browser

Output an image of network configuration in browser.

spp > topo http

topo term is useful to understand network configuration intuitively. However, it should be
executed on a node running SPP controller. You cannnot see the image if you login remote
node via ssh and running SPP controller on remote.

Websocket server is launched from src/controller/websocket/spp_ws.py to accept
client messages. You should start it before using topo term command. Then, open url
shown in the terminal (default is http://127.0.0.1:8989).

Browser and SPP controller behave as clients, but have different roles. Browser behaves as a
viwer and SPP controller behaves as a udpater. If you update network configuration and run
topo http command, SPP controller sends a message containing network configuration as
DOT language format. Once the message is accepted, websocket server sends it to viewer
clients immediately.

5.4. Experimental Commands 102

https://github.com/saitoha/libsixel
https://iterm2.com/index.html
https://iterm2.com/documentation-images.html

Soft Patch Panel Documentation, Release 19.11

Output to File

Output a text or image of network configuration to a file.

spp > topo [FILE_NAME] [FILE_TYPE]

You do not need to specify FILE_TYPE because topo is able to decide file type from
FILE_NAME. It is optional. This is a list of supported file type.

• dot

• js (or json)

• yml (or yaml)

• jpg

• png

• bmp

To generate a DOT file network.dot, run topo command with file name.

generate DOT file
spp > topo network.dot
Create topology: 'network.dot'
show contents of the file
spp > cat network.dot
digraph spp{
newrank=true;
node[shape="rectangle", style="filled"];
...

To generate a jpg image, run topo with the name network.jpg.

spp > topo network.jpg
spp > ls
... network.jpg ...

5.4.2 topo_subgraph

topo_subgraph is a supplemental command for managing subgraphs for topo.

spp > topo_subgraph VERB LABEL RES_ID1,RES_ID2,...

Each of options are:

• VERB: add or del

• LABEL: Arbitrary text, such as guest_vm1 or container1

• RES_ID: Series of Resource ID consists of type and ID such as vhost:1. Each of
resource IDs are separated with , or ;.

Subgraph is a group of object defined in dot language. Grouping objects helps your under-
standing relationship or hierarchy of each of objects. It is used for grouping resources on VM
or container to be more understandable.

For example, if you create two vhost interfaces for a guest VM and patch them to physical
ports, topo term shows a network configuration as following.

5.4. Experimental Commands 103

Soft Patch Panel Documentation, Release 19.11

Fig. 5.2: Before using topo_subgraph

Two of vhost interfaces are placed outside of Host while the guest VM runs on Host. However,
vhost:1 and vhost:2 should be placed inside Host actually. It is required to use subgraph!

To include guest VM and its resources inside the Host, use topo_subgraph with options.
In this case, add subgraph guest_vm and includes resoures vhost:1 and vhost:2 into the
subgraph.

spp > topo_subgraph add guest_vm vhost:1,vhost:2

Fig. 5.3: After using topo_subgraph

All of registered subgraphs are listed by using topo_subgraph with no options.

spp > topo_subgraph
label: guest_vm subgraph: "vhost:1,vhost:2"

If guest VM is shut down and subgraph is not needed anymore, delete subgraph guest_vm.

spp > topo_subgraph del guest_vm

5.4.3 load_cmd

Load command plugin dynamically while running SPP controller.

spp > load_cmd [CMD_NAME]

CLI of SPP controller is implemented with Shell class which is derived from Python stan-
dard library Cmd. It means that subcommands of SPP controller must be implemented as a
member method named as do_xxx. For instance, status subcommand is implemented as
do_status method.

load_cmd is for providing a way to define user specific command as a plugin. Plugin file must
be placed in spp/src/controller/command and command name must be the same as file
name. In addition, do_xxx method must be defined which is called from SPP controller.

For example, hello sample plugin is defined as spp/src/controller/command/hello.
py and do_hello is defined in this plugin. Comment for do_hello is used as help message
for hello command.

def do_hello(self, name):
"""Say hello to given user

spp > hello alice
Hello, alice!
"""

if name == '':
print('name is required!')

else:
hl = Hello(name)
hl.say()

5.4. Experimental Commands 104

Soft Patch Panel Documentation, Release 19.11

hello is loaded and called as following.

spp > load_cmd hello
Module 'command.hello' loaded.
spp > hello alice
Hello, alice!

5.4. Experimental Commands 105

CHAPTER 6

Tools

6.1 SPP Container

Running SPP and DPDK applications on containers.

6.1.1 Overview

SPP container is a set of tools for running SPP and DPDK applications with docker. It con-
sists of shell or python scripts for building container images and launching app containers with
docker commands.

As shown in Fig. 6.1, all of DPDK applications, including SPP primary and secondary pro-
cesses, run inside containers. SPP controller is just a python script and does not need to be
run as an app container.

Fig. 6.1: SPP container overview

6.1.2 Getting Started

In this section, learn how to use SPP container with a simple usecase. You use four of terminals
for running SPP processes and applications.

Setup DPDK and SPP

First of all, you need to clone DPDK and setup hugepages for running DPDK application as
described in Setup or DPDK’s Gettting Started Guide. You also need to load kernel modules
and bind network ports as in Linux Drivers.

Then, as described in Install DPDK and SPP , clone and compile SPP in any directory.

106

https://dpdk.org/doc/guides/linux_gsg/sys_reqs.html
https://dpdk.org/doc/guides/linux_gsg/linux_drivers.html

Soft Patch Panel Documentation, Release 19.11

Terminal 1
$ git clone http://dpdk.org/git/apps/spp
$ cd spp

Build Docker Images

Build tool is a python script for creating a docker image and currently supporting three types of
images for DPDK sample applications, pktgen-dpdk, or SPP.

Run build tool for creating three type of docker images. It starts to download the latest Ubuntu
docker image and installation for the latest DPDK, pktgen or SPP.

Terminal 1
$ cd /path/to/spp/tools/sppc
$ python3 build/main.py -t dpdk
$ python3 build/main.py -t pktgen
$ python3 build/main.py -t spp

Of course DPDK is required from pktgen and SPP, and it causes a problem of compatibility
between them sometimes. In this case, you should build SPP with --dpdk-branch option to
tell the version of DPDK explicitly.

Terminal 1
$ python3 build/main.py -t spp --dpdk-branch v19.11

You can find all of options by build/main.py -h.

Waiting for a minutes, then you are ready to launch app containers. All of images are referred
from docker images command.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
sppc/spp-ubuntu latest 3ec39adb460f 2 days ago 862MB
sppc/pktgen-ubuntu latest ffe65cc70e65 2 days ago 845MB
sppc/dpdk-ubuntu latest 0d5910d10e3f 2 days ago 1.66GB
<none> <none> d52d2f86a3c0 2 days ago 551MB
ubuntu latest 452a96d81c30 5 weeks ago 79.6MB

Note: The Name of container image is defined as a set of target, name and version of Linux
distoribution. For example, container image targetting dpdk apps on Ubuntu 18.04 is named
as sppc/dpdk-ubuntu:18.04.

There are several Dockerfiles for supporting several applications and distro versions under
build/ubuntu/. Build script understands which of Dockerfiles should be used based on
the given options. If you run build script with options for dpdk and Ubuntu 18.04 as below,
it finds build/ubuntu/dpdk/Dockerfile.18.04 and runs docker build. Options for
Linux distribution have default value, ubuntu and latest. So, you do not need to specify
them if you use default.

latest DPDK on latest Ubuntu
$ python3 build/main.py -t dpdk --dist-name ubuntu --dist-ver latest

it is also the same
$ python3 build/main.py -t dpdk

(continues on next page)

6.1. SPP Container 107

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

or use Ubuntu 18.04
$ python3 build/main.py -t dpdk --dist-ver 18.04

Version of other than distro is also configurable by specifying a branch number via command
line options.

$ python3 build/main.py -t dpdk --dist-ver 18.04 --dpdk-branch v19.11
$ python3 build/main.py -t pktgen --dist-ver 18.04 \

--dpdk-branch v18.02 --pktgen-branch pktgen-3.4.9
$ python3 build/main.py -t spp --dist-ver 18.04 --dpdk-branch v19.11

Launch SPP and App Containers

Note: In usecase described in this chapter, SPP processes other than spp-ctl and CLI
are containerized, but it is available to run as on host for communicating with other container
applications.

Before launch containers, you should set IP address of host machine as SPP_CTL_IP envi-
ronment variable for controller to be accessed from inside containers.

Set your host IP address
$ export SPP_CTL_IP=YOUR_HOST_IPADDR

SPP Controller

Launch spp-ctl and spp.py to be ready before primary and secondary processes.

Note: SPP controller also provides topo term command for containers which shows net-
work topology in a terminal.

However, there are a few terminals supporing this feature. mlterm is the most useful and easy
to customize. Refer Experimental Commands for topo command.

spp-ctl is launched in the terminal 1.

Terminal 1
$ cd /path/to/spp
$ python3 src/spp-ctl/spp-ctl

spp.py is launched in the terminal 2.

Terminal 2
$ cd /path/to/spp
$ python3 src/spp.py

6.1. SPP Container 108

Soft Patch Panel Documentation, Release 19.11

SPP Primary Container

As SPP_CTL_IP is activated, it is able to run app/spp-primary.py with options. In this
case, launch spp_primary in background mode using one core and two physical ports in
terminal 3.

Terminal 3
$ cd /path/to/spp/tools/sppc
$ python3 app/spp-primary.py -l 0 -p 0x03

SPP Secondary Container

spp_nfv is only supported for running on container currently.

Launch spp_nfv in terminal 3 with options for secondary ID is 1 and core list is 1-2 for using
2nd and 3rd cores. It is also run in background mode.

Terminal 3
$ python3 app/spp-nfv.py -i 1 -l 1-2

If it is succeeded, container is running in background. You can find it with docker ps com-
mand.

App Container

Launch DPDK’s testpmd as an example of app container.

Currently, most of app containers do not support ring PMD. It means that you should create
vhost PMDs from SPP controller before launching the app container.

Terminal 2
spp > nfv 1; add vhost:1
spp > nfv 1; add vhost:2

spp_nfv of ID 1 running inside container creates vhost:1 and vhost:2. So assign them to
testpmd with -d option which is for attaching vdevs as a comma separated list of resource
UIDs in SPP. testpmd is launched in foreground mode with -fg option in this case.

Note: DPDK app container tries to own ports on host which are shared with host and con-
tainers by default. It causes a confliction between SPP running on host and containers and
unexpected behavior.

To avoid this situation, it is required to use -b or --pci-blacklist EAL option to exclude
ports on host. PCI address of port can be inspected by using dpdk-devbind.py -s.

To exclude testpmd container tries to own physical ports, you should specify PCI addresses of
the ports with -b or --pci-blacklist. You can find PCI addresses from dpdk-devbind.
py -s.

6.1. SPP Container 109

Soft Patch Panel Documentation, Release 19.11

Check the status of the available devices.
dpdk-devbind --status
Network devices using DPDK-compatible driver
==
0000:0a:00.0 '82599ES 10-Gigabit' drv=igb_uio unused=ixgbe
0000:0a:00.1 '82599ES 10-Gigabit' drv=igb_uio unused=ixgbe

Network devices using kernel driver
===================================
...

In this case, you should exclude 0000:0a:00.0 and 0000:0a:00.1 with -b option.

Terminal 3
$ cd /path/to/spp/tools/sppc
$ python3 app/testpmd.py -l 3-4 \
-d vhost:1,vhost:2 \
-fg \
-b 0000:0a:00.0 0000:0a:00.1

sudo docker run -it \
...
-b 0000:0a:00.0 \
-b 0000:0a:00.1 \
...

Run Applications

At the end of this getting started guide, configure network paths as described in Fig. 6.2 and
start forwarding from testpmd.

Fig. 6.2: SPP and testpmd on containers

In terminal 2, add ring:0, connect vhost:1 and vhost:2 with it.

Terminal 2
spp > nfv 1; add ring:0
spp > nfv 1; patch vhost:1 ring:0
spp > nfv 1; patch ring:0 vhost:2
spp > nfv 1; forward
spp > nfv 1; status
- status: running
- lcore_ids:

- master: 1
- slave: 2

- ports:
- ring:0 -> vhost:2
- vhost:1 -> ring:0
- vhost:2

Start forwarding on port 0 by start tx_first.

Terminal 3
testpmd> start tx_first
io packet forwarding - ports=2 - cores=1 - streams=2 - NUMA support...
Logical Core 4 (socket 0) forwards packets on 2 streams:

RX P=0/Q=0 (socket 0) -> TX P=1/Q=0 (socket 0) peer=02:00:00:00:00:01

(continues on next page)

6.1. SPP Container 110

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

RX P=1/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00
...

Finally, stop forwarding to show statistics as the result. In this case, about 35 million packets
are forwarded.

Terminal 3
testpmd> stop
Telling cores to stop...
Waiting for lcores to finish...

---------------------- Forward statistics for port 0 ------------------
RX-packets: 0 RX-dropped: 0 RX-total: 0
TX-packets: 35077664 TX-dropped: 0 TX-total: 35077664
--

---------------------- Forward statistics for port 1 ------------------
RX-packets: 35077632 RX-dropped: 0 RX-total: 35077632
TX-packets: 32 TX-dropped: 0 TX-total: 32
--

+++++++++++++++ Accumulated forward statistics for all ports++++++++++++
RX-packets: 35077632 RX-dropped: 0 RX-total: 35077632
TX-packets: 35077696 TX-dropped: 0 TX-total: 35077696
++

6.1.3 Install

Required Packages

You need to install packages required for DPDK, and docker.

• DPDK 17.11 or later (supporting container)

• docker

Configurations

You might need some additional non-mandatory configurations.

Run docker without sudo

You should run docker as sudo in most of scripts provided in SPP container because for running
DPDK applications.

However, you can run docker without sudo if you do not run DPDK applications. It is useful if
you run docker kill for terminating containerized process, docker rm or docker rmi for
cleaning resources.

Terminate container from docker command
$ docker kill xxxxxx_yyyyyyy

Remove all of containers

(continues on next page)

6.1. SPP Container 111

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

$ docker rm `docker ps -aq`

Remove all of images
$ docker rmi `docker images -aq`

The reason for running docker requires sudo is docker daemon binds to a unix socket instead
of a TCP port. Unix socket is owned by root and other users can only access it using sudo.
However, you can run if you add your account to docker group.

$ sudo groupadd docker
$ sudo usermod -aG docker $USER

To activate it, you have to logout and re-login at once.

Network Proxy

If you are behind a proxy, you should configure proxy to build an image or running container.
SPP container is supportng proxy configuration for getting it from shell environments. You con-
firm that http_proxy, https_proxy and no_proxy of environmental variables are defined.

It also required to add proxy configurations for docker daemon. Proxy for docker dae-
mon is defined as [Service] entry in /etc/systemd/system/docker.service.d/
http-proxy.conf.

[Service]
Environment="HTTP_PROXY=http:..." "HTTPS_PROXY=https..." "NO_PROXY=..."

To activate it, you should restart docker daemon.

$ systemctl daemon-reload
$ systemctl restart docker

You can confirm that environments are updated by running docker info.

6.1.4 Build Images

As explained in Getting Started section, container image is built with build/main.py. This
script is for running docker build with a set of --build-args options for building DPDK
applications.

This script supports building application from any of repositories. For example, you can build
SPP hosted on your repository https://github.com/your/spp.git with DPDK 18.11 as
following.

$ cd /path/to/spp/tools/sppc
$ python3 build/main.py -t spp \

--dpdk-branch v18.11 \
--spp-repo https://github.com/your/spp.git

Refer all of options running with -h option.

6.1. SPP Container 112

Soft Patch Panel Documentation, Release 19.11

$ python3 build/main.py -h
usage: main.py [-h] [-t TARGET] [-ci CONTAINER_IMAGE]

[--dist-name DIST_NAME] [--dist-ver DIST_VER]
[--dpdk-repo DPDK_REPO] [--dpdk-branch DPDK_BRANCH]
[--pktgen-repo PKTGEN_REPO] [--pktgen-branch PKTGEN_BRANCH]
[--spp-repo SPP_REPO] [--spp-branch SPP_BRANCH]
[--suricata-repo SURICATA_REPO]
[--suricata-branch SURICATA_BRANCH]
[--only-envsh] [--dry-run]

Docker image builder for DPDK applications

optional arguments:
-h, --help show this help message and exit
-t TARGET, --target TARGET

Build target ('dpdk', 'pktgen', 'spp' or 'suricata')
-ci CONTAINER_IMAGE, --container-image CONTAINER_IMAGE

Name of container image
--dist-name DIST_NAME

Name of Linux distribution
--dist-ver DIST_VER Version of Linux distribution
--dpdk-repo DPDK_REPO

Git URL of DPDK
--dpdk-branch DPDK_BRANCH

Specific version or branch of DPDK
--pktgen-repo PKTGEN_REPO

Git URL of pktgen-dpdk
--pktgen-branch PKTGEN_BRANCH

Specific version or branch of pktgen-dpdk
--spp-repo SPP_REPO Git URL of SPP
--spp-branch SPP_BRANCH

Specific version or branch of SPP
--suricata-repo SURICATA_REPO

Git URL of DPDK-Suricata
--suricata-branch SURICATA_BRANCH

Specific version or branch of DPDK-Suricata
--only-envsh Create config 'env.sh' and exit without docker build
--dry-run Print matrix for checking and exit without docker

build

Version Control for Images

SPP container provides version control as combination of target name, Linux distribution
name and version. Built images are referred such as sppc/dpdk-ubuntu:latest, sppc/
spp-ubuntu:16.04 or so. sppc is just a prefix to indicate an image of SPP container.

Build script decides a name from given options or default values. If you run build script with only
target and without distribution name and version, it uses default values ubuntu and latest.

build 'sppc/dpdk-ubuntu:latest'
$ python3 build/main.py -t dpdk

build 'sppc/spp-ubuntu:16.04'
$ python3 build/main.py -t spp --dist-ver 16.04

Note: SPP container does not support distributions other than Ubuntu currently. It is because
SPP container has no Dockerfiles for building CentOS, Fedora or so. It will be supported in a
future release.

6.1. SPP Container 113

Soft Patch Panel Documentation, Release 19.11

You can build any of distributions with build script if you prepare Dockerfile by yourself. How
Dockerfiles are managed is described in Dockerfiles section.

App container scripts also understand this naming rule. For launching testpmd on Ubuntu
18.04, simply give --dist-ver to indicate the version and other options for testpmd itself.

launch testpmd on 'sppc/dpdk-ubuntu:18.04'
$ python3 app/testpmd.py --dist-ver 18.04 -l 3-4 ...

But, how can we build images for different versions of DPDK, such as 18.11 and 19.11, on the
same distribution? In this case, you can use --container-image or -ci option for using
any of names. It is also referred from app container scripts.

build image with arbitrary name
$ python3 build/main.py -t dpdk -ci sppc/dpdk18.11-ubuntu:latest \

--dpdk-branch v18.11

launch testpmd with '-ci'
$ python3 app/testpmd.py -ci sppc/dpdk18.11-ubuntu:latest -l 3-4 ...

Dockerfiles

SPP container includes Dockerfiles for each of distributions and its versions. For instance,
Dockerfiles for Ubuntu are found in build/ubuntu directory. You notice that each of Dock-
erfiles has its version as a part of file name. In other words, the list of Dockerfiles under the
ubuntu directory shows all of supported versions of Ubuntu. You can not find Dockerfiles for
CentOS as build/centos or other distributions because it is not supported currently. It is
included in a future release.

$ tree build/ubuntu/
build/ubuntu/
|--- dpdk
| |--- Dockerfile.16.04
| |--- Dockerfile.18.04
| ---- Dockerfile.latest
|--- pktgen
| |--- Dockerfile.16.04
| |--- Dockerfile.18.04
| ---- Dockerfile.latest
|--- spp
| |--- Dockerfile.16.04
| |--- Dockerfile.18.04
| ---- Dockerfile.latest
---- suricata

|--- Dockerfile.16.04
|--- Dockerfile.18.04
---- Dockerfile.latest

Build suricata image

Building DPDK, pktgen and SPP is completed by just running build/main.py script. How-
ever, building suricata requires few additional few steps.

First, build an image with main.py script as similar to other apps. In this example, use DPDK
v18.11 and Ubuntu 18.04.

6.1. SPP Container 114

Soft Patch Panel Documentation, Release 19.11

$ python3 build/main.py -t suricata --dpdk-branch v18.11 --dist-ver 18.04

After build is completed, you can find image named as sppc/suricata-ubuntu:18.04
from docker images. Run bash command with this image, and execute an installer script in
home directory which is created while building.

$ docker run -it sppc/suricata-ubuntu:18.04 /bin/bash
./install_suricata.sh

It clones and compiles suricata under home directory. You can find $HOME/
DPDK_SURICATA-4_1_1 after runing this script is completed.

Although now you are ready to use suricata, it takes a little time for doing this task everytime
you run the app container. For skipping this task, you can create another image from running
container with docker commit command.

Logout and create a new docker image with docker commit image’s container ID. In this
example, new image is named as sppc/suricata-ubuntu2:18.04.

exit
$ docker ps -a
CONTAINER_ID sppc/suricata-ubuntu:18.04 "/bin/bash" 3 minutes ...
$ docker commit CONTAINER_ID sppc/suricata-ubuntu2:18.04

You can run compiled suricata with the new image with docker as following, or app container
launcher with specific options as described in. Suricata Container .

$ docker run -it sppc/suricata-ubuntu:18.04 /bin/bash
suricata --build-info

Inspect Inside of Container

Container is useful, but just bit annoying to inspect inside the container because it is cleaned
up immediately after process is finished and there is no clue what is happened in.

build/run.sh is a helper script to inspect inside the container. You can run bash on the
container to confirm behaviour of targetting application, or run any of command.

This script refers ubuntu/dpdk/env.sh for Ubuntu image to include environment variables.
So, it is failed to build/run.sh if this config file does not exist. You can create it from build/
main.py with --only-envsh option if you removed it accidentally.

6.1.5 App Container Launchers

App container launcher is a python script for running SPP or DPDK application on a container.
As described by name, for instance, pktgen.py launches pktgen-dpdk inside a container.

$ tree app/
app/
...
|--- helloworld.py
|--- l2fwd.py
|--- l3fwd.py
|--- l3fwd-acl.py

(continues on next page)

6.1. SPP Container 115

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

|--- load-balancer.py
|--- pktgen.py
|--- spp-nfv.py
|--- spp-primary.py
|--- suricata.py
---- testpmd.py

Setup

You should define SPP_CTL_IP environment variable to SPP controller be accessed from
other SPP processes inside containers. SPP controller is a CLI tool for accepting user’s com-
mands.

You cannot use 127.0.0.1 or localhost for SPP_CTL_IP because SPP processes try to
find SPP controller inside each of containers and fail to. From inside of the container, SPP
processes should be known IP address other than 127.0.0.1 or localhost of host on
which SPP controller running.

SPP controller should be launched before other SPP processes.

$ cd /path/to/spp
$ python3 src/spp.py

SPP Primary Container

SPP primary process is launched from app/spp-primary.py as an app container. It man-
ages resources on host from inside the container. app/spp-primary.py calls docker run
with -v option to mount hugepages and other devices in the container to share them between
host and containers.

SPP primary process is launched as foreground or background mode. You can show statistics
of packet forwarding if you launch it with two cores and in foreground mode. In this case, SPP
primary uses one for resource management and another one for showing statistics. If you need
to minimize the usage of cores, or are not interested in the statistics, you should give just one
core and run in background mode. If you run SPP primary in foreground mode with one core,
it shows log messages which is also referred in syslog.

Here is an example for launching SPP primary with core list 0-1 in foreground mode. You
should give portmask opiton -p because SPP primary requires at least one port, or failed to
launch. This example is assumed that host machine has two or more physical ports.

$ cd /path/to/spp/tools/sppc
$ python3 app/spp-primary -l 0-1 -p 0x03 -fg

It is another example with one core and two ports in background mode.

$ python3 app/spp-primary -l 0 -p 0x03

SPP primary is able to run with virtual devices instead of physical NICs for a case you do not
have dedicated NICs for DPDK.

$ python3 app/spp-primary -l 0 -d vhost:1,vhost:2 -p 0x03

6.1. SPP Container 116

Soft Patch Panel Documentation, Release 19.11

If you need to inspect a docker command without launching a container, use --dry-run
option. It composes docker command and just display it without running the docker command.

You refer all of options with -h option. Options of app container scripts are categorized four
types. First one is EAL option, for example -l, -c or -m. Second one is app container option
which is a common set of options for app containers connected with SPP. So, containers of
SPP processes do not have app container option. Third one is application specific option. In
this case, -n, -p or -ip. Final one is container option, for example --dist-name or --ci.
EAL options and container options are common for all of app container scripts. On the other
hand, application specific options are different each other.

$ python3 app/spp-primary.py -h
usage: spp-primary.py [-h] [-l CORE_LIST] [-c CORE_MASK] [-m MEM]

[--vdev [VDEV [VDEV ...]]] [--socket-mem SOCKET_MEM]
[-b [PCI_BLACKLIST [PCI_BLACKLIST ...]]]
[-w [PCI_WHITELIST [PCI_WHITELIST ...]]]
[--single-file-segments] [--nof-memchan NOF_MEMCHAN]
[-d DEV_UIDS] [-v [VOLUME [VOLUME ...]]]
[-nq NOF_QUEUES] [--no-privileged] [-n NOF_RING]
[-p PORT_MASK] [-ip CTL_IP] [--ctl-port CTL_PORT]
[--dist-name DIST_NAME] [--dist-ver DIST_VER]
[--workdir WORKDIR] [--name NAME] [-ci CONTAINER_IMAGE]
[-fg] [--dry-run]

Launcher for spp-primary application container

optional arguments:
-h, --help show this help message and exit
-l CORE_LIST, --core-list CORE_LIST

Core list
-c CORE_MASK, --core-mask CORE_MASK

Core mask
-m MEM, --mem MEM Memory size (default is 1024)
--vdev [VDEV [VDEV ...]]

Virtual device in the format of DPDK
--socket-mem SOCKET_MEM

Memory size
-b [PCI_BLACKLIST [PCI_BLACKLIST ...]], --pci-blacklist [PCI_BLACKLIST...

PCI blacklist for excluding devices
-w [PCI_WHITELIST [PCI_WHITELIST ...]], --pci-whitelist [PCI_WHITELIST...

PCI whitelist for including devices
--single-file-segments

Create fewer files in hugetlbfs (non-legacy mode
only).

--nof-memchan NOF_MEMCHAN
Number of memory channels (default is 4)

-d DEV_UIDS, --dev-uids DEV_UIDS
Virtual devices of SPP in resource UID format

-v [VOLUME [VOLUME ...]], --volume [VOLUME [VOLUME ...]]
Bind mount a volume (for docker)

-nq NOF_QUEUES, --nof-queues NOF_QUEUES
Number of queues of virtio (default is 1)

--no-privileged Disable docker's privileged mode if it's needed
-n NOF_RING, --nof-ring NOF_RING

Maximum number of Ring PMD
-p PORT_MASK, --port-mask PORT_MASK

Port mask
-ip CTL_IP, --ctl-ip CTL_IP

IP address of spp-ctl
--ctl-port CTL_PORT Port for primary of spp-ctl
--dist-name DIST_NAME

(continues on next page)

6.1. SPP Container 117

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

Name of Linux distribution
--dist-ver DIST_VER Version of Linux distribution
--workdir WORKDIR Path of directory in which the command is launched
--name NAME Name of container
-ci CONTAINER_IMAGE, --container-image CONTAINER_IMAGE

Name of container image
-fg, --foreground Run container as foreground mode
--dry-run Only print matrix, do not run, and exit

SPP Secondary Container

In SPP, there are three types of secondary process, spp_nfv, spp_vf or so. However, SPP
container does only support spp_nfv currently.

spp-nfv.py launches spp_nfv as an app container and requires options for secondary ID
and core list (or core mask).

$ cd /path/to/spp/tools/sppc
$ python3 app/spp-nfv.py -i 1 -l 2-3

Refer help for all of options and usges. It shows only application specific options for simplicity.

$ python3 app/spp-nfv.py -h
usage: spp-nfv.py [-h] [-l CORE_LIST] [-c CORE_MASK] [-m MEM]

[--vdev [VDEV [VDEV ...]]] [--socket-mem SOCKET_MEM]
[-b [PCI_BLACKLIST [PCI_BLACKLIST ...]]]
[-w [PCI_WHITELIST [PCI_WHITELIST ...]]]
[--single-file-segments] [--nof-memchan NOF_MEMCHAN]
[-d DEV_UIDS] [-v [VOLUME [VOLUME ...]]] [-nq NOF_QUEUES]
[--no-privileged] [-i SEC_ID] [-ip CTL_IP]
[--ctl-port CTL_PORT] [--dist-name DIST_NAME]
[--dist-ver DIST_VER] [--workdir WORKDIR] [--name NAME]
[-ci CONTAINER_IMAGE] [-fg] [--dry-run]

Launcher for spp-nfv application container

optional arguments:
...
-i SEC_ID, --sec-id SEC_ID

Secondary ID
-ip CTL_IP, --ctl-ip CTL_IP

IP address of spp-ctl
--ctl-port CTL_PORT Port for secondary of spp-ctl
...

L2fwd Container

app/l2fwd.py is a launcher script for DPDK l2fwd sample application. It launches l2fwd
on a container with specified vhost interfaces.

This is an example for launching with two cores (6-7th cores) with -l and two vhost interfaces
with -d. l2fwd requires --port-mask or -p option and the number of ports should be even
number.

6.1. SPP Container 118

Soft Patch Panel Documentation, Release 19.11

$ cd /path/to/spp/tools/sppc
$ python3 app/l2fwd.py -l 6-7 -d vhost:1,vhost:2 -p 0x03 -fg
...

Refer help for all of options and usges. It includes app container options, for example -d
for vhost devices and -nq for the number of queues of virtio, because l2fwd is not a SPP
process. It shows options without of EAL and container for simplicity.

$ python3 app/l2fwd.py -h
usage: l2fwd.py [-h] [-l CORE_LIST] [-c CORE_MASK] [-m MEM]

[--vdev [VDEV [VDEV ...]]] [--socket-mem SOCKET_MEM]
[-b [PCI_BLACKLIST [PCI_BLACKLIST ...]]]
[-w [PCI_WHITELIST [PCI_WHITELIST ...]]]
[--single-file-segments] [--nof-memchan NOF_MEMCHAN]
[-d DEV_UIDS] [-v [VOLUME [VOLUME ...]]] [-nq NOF_QUEUES]
[--no-privileged] [-p PORT_MASK] [--dist-name DIST_NAME]
[--dist-ver DIST_VER] [--workdir WORKDIR] [--name NAME]
[-ci CONTAINER_IMAGE] [-fg] [--dry-run]

Launcher for l2fwd application container

optional arguments:
...
-d DEV_UIDS, --dev-uids DEV_UIDS

Virtual devices of SPP in resource UID format
-nq NOF_QUEUES, --nof-queues NOF_QUEUES

Number of queues of virtio (default is 1)
--no-privileged Disable docker's privileged mode if it's needed
-p PORT_MASK, --port-mask PORT_MASK

Port mask
...

L3fwd Container

L3fwd application is a simple example of packet processing using the DPDK. Differed from
l2fwd, the forwarding decision is made based on information read from input packet. This
application provides LPM (longest prefix match) or EM (exact match) methods for packet clas-
sification.

app/l3fwd.py launches l3fwd on a container. As similar to l3fwd application, this python
script takes several options other than EAL for port configurations and classification methods.
The mandatory options for the application are -p for portmask and --config for rx as a set
of combination of (port, queue, locre).

Here is an example for launching l3fwd app container with two vhost interfaces and printed
log messages. There are two rx ports. (0,0,1) is for queue of port 0 for which lcore 1 is
assigned, and (1,0,2) is for port 1. In this case, you should add -nq option because the
number of both of rx and tx queues are two while the default number of virtio device is one.
The number of tx queues, is two in this case, is decided to be the same value as the number
of lcores. In --vdev option setup in the script, the number of queues is defined as virtio_.
..,queues=2,....

$ cd /path/to/spp/tools/sppc
$ python3 app/l3fwd.py -l 1-2 -nq 2 -d vhost:1,vhost:2 \

-p 0x03 --config="(0,0,1),(1,0,2)" -fg
sudo docker run \

(continues on next page)

6.1. SPP Container 119

https://dpdk.org/doc/guides/sample_app_ug/l3_forward.html

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

-it \
...
--vdev virtio_user1,queues=2,path=/var/run/usvhost1 \
--vdev virtio_user2,queues=2,path=/var/run/usvhost2 \
--file-prefix spp-l3fwd-container1 \
-- \
-p 0x03 \
--config "(0,0,8),(1,0,9)" \
--parse-ptype ipv4

EAL: Detected 16 lcore(s)
EAL: Auto-detected process type: PRIMARY
EAL: Multi-process socket /var/run/.spp-l3fwd-container1_unix
EAL: Probing VFIO support...
soft parse-ptype is enabled
LPM or EM none selected, default LPM on
Initializing port 0 ... Creating queues: nb_rxq=1 nb_txq=2...
LPM: Adding route 0x01010100 / 24 (0)
LPM: Adding route 0x02010100 / 24 (1)
LPM: Adding route IPV6 / 48 (0)
LPM: Adding route IPV6 / 48 (1)
txq=8,0,0 txq=9,1,0
Initializing port 1 ... Creating queues: nb_rxq=1 nb_txq=2...

Initializing rx queues on lcore 8 ... rxq=0,0,0
Initializing rx queues on lcore 9 ... rxq=1,0,0
...

You can increase lcores more than the number of ports, for instance, four lcores for two ports.
However, remaining 3rd and 4th lcores do nothing and require -nq 4 for tx queues.

Default classification rule is LPM and the routing table is defined in dpdk/examples/l3fwd/
l3fwd_lpm.c as below.

static struct ipv4_l3fwd_lpm_route ipv4_l3fwd_lpm_route_array[] = {
{IPv4(1, 1, 1, 0), 24, 0},
{IPv4(2, 1, 1, 0), 24, 1},
{IPv4(3, 1, 1, 0), 24, 2},
{IPv4(4, 1, 1, 0), 24, 3},
{IPv4(5, 1, 1, 0), 24, 4},
{IPv4(6, 1, 1, 0), 24, 5},
{IPv4(7, 1, 1, 0), 24, 6},
{IPv4(8, 1, 1, 0), 24, 7},

};

Refer help for all of options and usges. It shows options without of EAL and container for
simplicity.

$ python3 app/l3fwd.py -h
usage: l3fwd.py [-h] [-l CORE_LIST] [-c CORE_MASK] [-m MEM]

[--vdev [VDEV [VDEV ...]]] [--socket-mem SOCKET_MEM]
[-b [PCI_BLACKLIST [PCI_BLACKLIST ...]]]
[-w [PCI_WHITELIST [PCI_WHITELIST ...]]]
[--single-file-segments] [--nof-memchan NOF_MEMCHAN]
[-d DEV_UIDS] [-v [VOLUME [VOLUME ...]]] [-nq NOF_QUEUES]
[--no-privileged] [-p PORT_MASK] [--config CONFIG] [-P] [-E]
[-L] [-dst [ETH_DEST [ETH_DEST ...]]] [--enable-jumbo]
[--max-pkt-len MAX_PKT_LEN] [--no-numa] [--hash-entry-num]
[--ipv6] [--parse-ptype PARSE_PTYPE] [--dist-name DIST_NAME]
[--dist-ver DIST_VER] [--workdir WORKDIR] [--name NAME]

(continues on next page)

6.1. SPP Container 120

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

[-ci CONTAINER_IMAGE] [-fg] [--dry-run]

Launcher for l3fwd application container

optional arguments:
...
-d DEV_UIDS, --dev-uids DEV_UIDS

Virtual devices of SPP in resource UID format
-nq NOF_QUEUES, --nof-queues NOF_QUEUES

Number of queues of virtio (default is 1)
--no-privileged Disable docker's privileged mode if it's needed
-p PORT_MASK, --port-mask PORT_MASK

(Mandatory) Port mask
--config CONFIG (Mandatory) Define set of port, queue, lcore for

ports
-P, --promiscous Set all ports to promiscous mode (default is None)
-E, --exact-match Enable exact match (default is None)
-L, --longest-prefix-match

Enable longest prefix match (default is None)
-dst [ETH_DEST [ETH_DEST ...]], --eth-dest [ETH_DEST [ETH_DEST ...]]

Ethernet dest for port X (X,MM:MM:MM:MM:MM:MM)
--enable-jumbo Enable jumbo frames, [--enable-jumbo [--max-pkt-len

PKTLEN]]
--max-pkt-len MAX_PKT_LEN

Max packet length (64-9600) if jumbo is enabled.
--no-numa Disable NUMA awareness (default is None)
--hash-entry-num Specify the hash entry number in hexadecimal

(default is None)
--ipv6 Specify the hash entry number in hexadecimal

(default is None)
--parse-ptype PARSE_PTYPE

Set analyze packet type, ipv4 or ipv6 (default is
ipv4)

...

L3fwd-acl Container

L3 Forwarding with Access Control application is a simple example of packet processing using
the DPDK. The application performs a security check on received packets. Packets that are in
the Access Control List (ACL), which is loaded during initialization, are dropped. Others are
forwarded to the correct port.

app/l3fwd-acl.py launches l3fwd-acl on a container. As similar to l3fwd-acl, this python
script takes several options other than EAL for port configurations and rules. The mandatory
options for the application are -p for portmask and --config for rx as a set of combination of
(port, queue, locre).

Here is an example for launching l3fwd app container with two vhost interfaces and printed
log messages. There are two rx ports. (0,0,1) is for queue of port 0 for which lcore 1 is
assigned, and (1,0,2) is for port 1. In this case, you should add -nq option because the
number of both of rx and tx queues are two while the default number of virtio device is one.
The number of tx queues, is two in this case, is decided to be the same value as the number
of lcores. In --vdev option setup in the script, the number of queues is defined as virtio_.
..,queues=2,....

6.1. SPP Container 121

https://doc.dpdk.org/guides/sample_app_ug/l3_forward_access_ctrl.html

Soft Patch Panel Documentation, Release 19.11

$ cd /path/to/spp/tools/sppc
$ python3 app/l3fwd-acl.py -l 1-2 -nq 2 -d vhost:1,vhost:2 \

--rule_ipv4="./rule_ipv4.db" --rule_ipv6="./rule_ipv6.db" --scalar \
-p 0x03 --config="(0,0,1),(1,0,2)" -fg

sudo docker run \
-it \
...
--vdev virtio_user1,queues=2,path=/var/run/usvhost1 \
--vdev virtio_user2,queues=2,path=/var/run/usvhost2 \
--file-prefix spp-l3fwd-container1 \
-- \
-p 0x03 \
--config "(0,0,8),(1,0,9)" \
--rule_ipv4="./rule_ipv4.db" \
--rule_ipv6="./rule_ipv6.db" \
--scalar

EAL: Detected 16 lcore(s)
EAL: Auto-detected process type: PRIMARY
EAL: Multi-process socket /var/run/.spp-l3fwd-container1_unix
EAL: Probing VFIO support...
soft parse-ptype is enabled
LPM or EM none selected, default LPM on
Initializing port 0 ... Creating queues: nb_rxq=1 nb_txq=2...
LPM: Adding route 0x01010100 / 24 (0)
LPM: Adding route 0x02010100 / 24 (1)
LPM: Adding route IPV6 / 48 (0)
LPM: Adding route IPV6 / 48 (1)
txq=8,0,0 txq=9,1,0
Initializing port 1 ... Creating queues: nb_rxq=1 nb_txq=2...

Initializing rx queues on lcore 8 ... rxq=0,0,0
Initializing rx queues on lcore 9 ... rxq=1,0,0
...

You can increase lcores more than the number of ports, for instance, four lcores for two ports.
However, remaining 3rd and 4th lcores do nothing and require -nq 4 for tx queues.

Refer help for all of options and usges. It shows options without of EAL and container for
simplicity.

$ python3 app/l3fwd-acl.py -h
usage: l3fwd-acl.py [-h] [-l CORE_LIST] [-c CORE_MASK] [-m MEM]

[--socket-mem SOCKET_MEM]
[-b [PCI_BLACKLIST [PCI_BLACKLIST ...]]]
[-w [PCI_WHITELIST [PCI_WHITELIST ...]]]
[--single-file-segment] [--nof-memchan NOF_MEMCHAN]
[-d DEV_IDS] [-nq NOF_QUEUES] [--no-privileged]
[-p PORT_MASK] [--config CONFIG] [-P]
[--rule_ipv4 RULE_IPV4] [--rule_ipv6 RULE_IPV6]
[--scalar] [--enable-jumbo]
[--max-pkt-len MAX_PKT_LEN] [--no-numa]
[--dist-name DIST_NAME] [--dist-ver DIST_VER]
[--workdir WORKDIR] [-ci CONTAINER_IMAGE] [-fg]
[--dry-run]

usage: l3fwd-acl.py [-h] [-l CORE_LIST] [-c CORE_MASK] [-m MEM]
[--vdev [VDEV [VDEV ...]]] [--socket-mem SOCKET_MEM]
[-b [PCI_BLACKLIST [PCI_BLACKLIST ...]]]
[-w [PCI_WHITELIST [PCI_WHITELIST ...]]]
[--single-file-segments] [--nof-memchan NOF_MEMCHAN]
[-d DEV_UIDS] [-v [VOLUME [VOLUME ...]]]

(continues on next page)

6.1. SPP Container 122

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

[-nq NOF_QUEUES] [--no-privileged] [-p PORT_MASK]
[--config CONFIG] [-P]
[--rule_ipv4 RULE_IPV4] [--rule_ipv6 RULE_IPV6]
[--scalar] [--enable-jumbo] [--max-pkt-len MAX_PKT_LEN]
[--no-numa] [--dist-name DIST_NAME]
[--dist-ver DIST_VER] [--workdir WORKDIR] [--name NAME]
[-ci CONTAINER_IMAGE] [-fg] [--dry-run]

Launcher for l3fwd-acl application container

optional arguments:
...
-d DEV_UIDS, --dev-uids DEV_UIDS

Virtual devices of SPP in resource UID format
-nq NOF_QUEUES, --nof-queues NOF_QUEUES

Number of queues of virtio (default is 1)
--no-privileged Disable docker's privileged mode if it's needed
-p PORT_MASK, --port-mask PORT_MASK

(Mandatory) Port mask
--config CONFIG (Mandatory) Define set of port, queue, lcore for

ports
-P, --promiscous Set all ports to promiscous mode (default is None)
--rule_ipv4 RULE_IPV4

Specifies the IPv4 ACL and route rules file
--rule_ipv6 RULE_IPV6

Specifies the IPv6 ACL and route rules file
--scalar Use a scalar function to perform rule lookup
--enable-jumbo Enable jumbo frames, [--enable-jumbo [--max-pkt-len

PKTLEN]]
--max-pkt-len MAX_PKT_LEN

Max packet length (64-9600) if jumbo is enabled.
--no-numa Disable NUMA awareness (default is None)
...

Testpmd Container

testpmd.py is a launcher script for DPDK’s testpmd application.

It launches testpmd inside a container with specified vhost interfaces.

This is an example for launching with three cores (6-8th cores) and two vhost interfaces. This
example is for launching testpmd in interactive mode.

$ cd /path/to/spp/tools/sppc
$ python3 app/testpmd.py -l 6-8 -d vhost:1,vhost:2 -fg -i
sudo docker run \
...
-- \
--interactive
...

Checking link statuses...
Done
testpmd>

Testpmd has many useful options. Please refer to Running the Application section for instruc-
tions.

Note: testpmd.py does not support all of options of testpmd currently. You can find all

6.1. SPP Container 123

https://dpdk.org/doc/guides/testpmd_app_ug/index.html
https://dpdk.org/doc/guides/testpmd_app_ug/run_app.html

Soft Patch Panel Documentation, Release 19.11

of options with -h option, but some of them is not implemented. If you run testpmd with not
supported option, It just prints an error message to mention.

$ python3 app/testpmd.py -l 1,2 -d vhost:1,vhost:2 \
--port-topology=chained

Error: '--port-topology' is not supported yet

Refer help for all of options and usges. It shows options without of EAL and container.

$ python3 app/testpmd.py -h
usage: testpmd.py [-h] [-l CORE_LIST] [-c CORE_MASK] [-m MEM]

[--vdev [VDEV [VDEV ...]]] [--socket-mem SOCKET_MEM]
[-b [PCI_BLACKLIST [PCI_BLACKLIST ...]]]
[-w [PCI_WHITELIST [PCI_WHITELIST ...]]]
[--single-file-segments]
[--nof-memchan NOF_MEMCHAN] [-d DEV_UIDS]
[-v [VOLUME [VOLUME ...]]]
[-nq NOF_QUEUES] [--no-privileged] [--pci] [-i] [-a]
[--tx-first] [--stats-period STATS_PERIOD]
[--nb-cores NB_CORES] [--coremask COREMASK]
[--portmask PORTMASK] [--no-numa]
[--port-numa-config PORT_NUMA_CONFIG]
[--ring-numa-config RING_NUMA_CONFIG]
[--socket-num SOCKET_NUM] [--mbuf-size MBUF_SIZE]
[--total-num-mbufs TOTAL_NUM_MBUFS]
[--max-pkt-len MAX_PKT_LEN]
[--eth-peers-configfile ETH_PEERS_CONFIGFILE]
[--eth-peer ETH_PEER] [--pkt-filter-mode PKT_FILTER_MODE]
[--pkt-filter-report-hash PKT_FILTER_REPORT_HASH]
[--pkt-filter-size PKT_FILTER_SIZE]
[--pkt-filter-flexbytes-offset PKT_FILTER_FLEXBYTES_OFFSET]
[--pkt-filter-drop-queue PKT_FILTER_DROP_QUEUE]
[--disable-crc-strip] [--enable-lro] [--enable-rx-cksum]
[--enable-scatter] [--enable-hw-vlan]
[--enable-hw-vlan-filter]
[--enable-hw-vlan-strip] [--enable-hw-vlan-extend]
[--enable-drop-en] [--disable-rss]
[--port-topology PORT_TOPOLOGY]
[--forward-mode FORWARD_MODE] [--rss-ip] [--rss-udp]
[--rxq RXQ] [--rxd RXD] [--txq TXQ] [--txd TXD]
[--burst BURST] [--mbcache MBCACHE]
[--rxpt RXPT] [--rxht RXHT] [--rxfreet RXFREET]
[--rxwt RXWT] [--txpt TXPT] [--txht TXHT] [--txwt TXWT]
[--txfreet TXFREET] [--txrst TXRST]
[--rx-queue-stats-mapping RX_QUEUE_STATS_MAPPING]
[--tx-queue-stats-mapping TX_QUEUE_STATS_MAPPING]
[--no-flush-rx] [--txpkts TXPKTS]
[--disable-link-check] [--no-lsc-interrupt]
[--no-rmv-interrupt]
[--bitrate-stats [BITRATE_STATS [BITRATE_STATS ...]]]
[--print-event PRINT_EVENT] [--mask-event MASK_EVENT]
[--flow-isolate-all] [--tx-offloads TX_OFFLOADS]
[--hot-plug] [--vxlan-gpe-port VXLAN_GPE_PORT]
[--mlockall] [--no-mlockall]
[--dist-name DIST_NAME] [--dist-ver DIST_VER]
[--workdir WORKDIR]
[--name NAME] [-ci CONTAINER_IMAGE] [-fg] [--dry-run]

Launcher for testpmd application container

(continues on next page)

6.1. SPP Container 124

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

optional arguments:
...
-d DEV_UIDS, --dev-uids DEV_UIDS

Virtual devices of SPP in resource UID format
-nq NOF_QUEUES, --nof-queues NOF_QUEUES

Number of queues of virtio (default is 1)
--no-privileged Disable docker's privileged mode if it's needed
--pci Enable PCI (default is None)
-i, --interactive Run in interactive mode (default is None)
-a, --auto-start Start forwarding on initialization (default ...)
--tx-first Start forwarding, after sending a burst of packets

first
--stats-period STATS_PERIOD

Period of displaying stats, if interactive is
disabled

--nb-cores NB_CORES Number of forwarding cores
--coremask COREMASK Hexadecimal bitmask of the cores, do not include

master lcore
--portmask PORTMASK Hexadecimal bitmask of the ports
--no-numa Disable NUMA-aware allocation of RX/TX rings and RX

mbuf
--port-numa-config PORT_NUMA_CONFIG

Specify port allocation as
(port,socket)[,(port,socket)]

--ring-numa-config RING_NUMA_CONFIG
Specify ring allocation as
(port,flag,socket)[,(port,flag,socket)]

--socket-num SOCKET_NUM
Socket from which all memory is allocated in NUMA
mode

--mbuf-size MBUF_SIZE
Size of mbufs used to N (< 65536) bytes (default is
2048)

--total-num-mbufs TOTAL_NUM_MBUFS
Number of mbufs allocated in mbuf pools, N > 1024.

--max-pkt-len MAX_PKT_LEN
Maximum packet size to N (>= 64) bytes (default is
1518)

--eth-peers-configfile ETH_PEERS_CONFIGFILE
Config file of Ether addrs of the peer ports

--eth-peer ETH_PEER Set MAC addr of port N as 'N,XX:XX:XX:XX:XX:XX'
--pkt-filter-mode PKT_FILTER_MODE

Flow Director mode, 'none'(default), 'signature' or
'perfect'

--pkt-filter-report-hash PKT_FILTER_REPORT_HASH
Flow Director hash match mode, 'none',
'match'(default) or 'always'

--pkt-filter-size PKT_FILTER_SIZE
Flow Director memory size ('64K', '128K', '256K').
The default is 64K.

--pkt-filter-flexbytes-offset PKT_FILTER_FLEXBYTES_OFFSET
Flexbytes offset (0-32, default is 0x6) defined in
words counted from the first byte of the dest MAC
address

--pkt-filter-drop-queue PKT_FILTER_DROP_QUEUE
Set the drop-queue (default is 127)

--disable-crc-strip Disable hardware CRC stripping
--enable-lro Enable large receive offload
--enable-rx-cksum Enable hardware RX checksum offload
--enable-scatter Enable scatter (multi-segment) RX
--enable-hw-vlan Enable hardware vlan (default is None)

(continues on next page)

6.1. SPP Container 125

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

--enable-hw-vlan-filter
Enable hardware VLAN filter

--enable-hw-vlan-strip
Enable hardware VLAN strip

--enable-hw-vlan-extend
Enable hardware VLAN extend

--enable-drop-en Enable per-queue packet drop if no descriptors
--disable-rss Disable RSS (Receive Side Scaling
--port-topology PORT_TOPOLOGY

Port topology, 'paired' (the default) or 'chained'
--forward-mode FORWARD_MODE

Forwarding mode, 'io' (default), 'mac', 'mac_swap',
'flowgen', 'rxonly', 'txonly', 'csum', 'icmpecho',
'ieee1588', 'tm'

--rss-ip Set RSS functions for IPv4/IPv6 only
--rss-udp Set RSS functions for IPv4/IPv6 and UDP
--rxq RXQ Number of RX queues per port, 1-65535 (default ...)
--rxd RXD Number of descriptors in the RX rings

(default is 128)
--txq TXQ Number of TX queues per port, 1-65535 (default ...)
--txd TXD Number of descriptors in the TX rings

(default is 512)
--burst BURST Number of packets per burst, 1-512 (default is 32)
--mbcache MBCACHE Cache of mbuf memory pools, 0-512 (default is 16)
--rxpt RXPT Prefetch threshold register of RX rings

(default is 8)
--rxht RXHT Host threshold register of RX rings (default is 8)
--rxfreet RXFREET Free threshold of RX descriptors,0-'rxd' (...)
--rxwt RXWT Write-back threshold register of RX rings

(default is 4)
--txpt TXPT Prefetch threshold register of TX rings (...)
--txht TXHT Host threshold register of TX rings (default is 0)
--txwt TXWT Write-back threshold register of TX rings (...)
--txfreet TXFREET Free threshold of RX descriptors, 0-'txd' (...)
--txrst TXRST Transmit RS bit threshold of TX rings, 0-'txd'

(default is 0)
--rx-queue-stats-mapping RX_QUEUE_STATS_MAPPING

RX queues statistics counters mapping 0-15 as
'(port,queue,mapping)[,(port,queue,mapping)]'

--tx-queue-stats-mapping TX_QUEUE_STATS_MAPPING
TX queues statistics counters mapping 0-15 as
'(port,queue,mapping)[,(port,queue,mapping)]'

--no-flush-rx Don’t flush the RX streams before starting
forwarding, Used mainly with the PCAP PMD

--txpkts TXPKTS TX segment sizes or total packet length, Valid for
tx-only and flowgen

--disable-link-check Disable check on link status when starting/stopping
ports

--no-lsc-interrupt Disable LSC interrupts for all ports
--no-rmv-interrupt Disable RMV interrupts for all ports
--bitrate-stats [BITRATE_STATS [BITRATE_STATS ...]]

Logical core N to perform bitrate calculation
--print-event PRINT_EVENT

Enable printing the occurrence of the designated
event, <unknown|intr_lsc|queue_state|intr_reset|
vf_mbox|macsec|intr_rmv|dev_probed|dev_released|
all>

--mask-event MASK_EVENT
Disable printing the occurrence of the designated
event, <unknown|intr_lsc|queue_state|intr_reset|
vf_mbox|macsec|intr_rmv|dev_probed|dev_released|

(continues on next page)

6.1. SPP Container 126

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

all>
--flow-isolate-all Providing this parameter requests flow API isolated

mode on all ports at initialization time
--tx-offloads TX_OFFLOADS

Hexadecimal bitmask of TX queue offloads (default
is 0)

--hot-plug Enable device event monitor machenism for hotplug
--vxlan-gpe-port VXLAN_GPE_PORT

UDP port number of tunnel VXLAN-GPE (default is
4790)

--mlockall Enable locking all memory
--no-mlockall Disable locking all memory
...

Pktgen-dpdk Container

pktgen.py is a launcher script for pktgen-dpdk. Pktgen is a software based traffic generator
powered by the DPDK fast packet processing framework. It is not only high-performance for
generating 10GB traffic with 64 byte frames, but also very configurable to handle packets with
UDP, TCP, ARP, ICMP, GRE, MPLS and Queue-in-Queue. It also supports Lua for detailed
configurations.

This pktgen.py script launches pktgen app container with specified vhost interfaces. Here
is an example for launching with seven lcores (8-14th) and three vhost interfaces.

$ cd /path/to/spp/tools/sppc
$ python3 app/pktgen.py -l 8-14 -d vhost:1,vhost:2,vhost:3 \

-fg
sudo docker run \
...
sppc/pktgen-ubuntu:latest \
/root/dpdk/../pktgen-dpdk/app/x86_64-native-linux-gcc/pktgen \
-l 8-14 \
...
-- \
-m [9:10].0,[11:12].1,[13:14].2
...

You notice that given lcores -l 8-14 are assigned appropriately. Lcore 8 is used as mas-
ter and remaining six lcores are use to worker threads for three ports as -m [9:10].0,
[11:12].1,[13:14].2 equally. If the number of given lcores is larger than required, re-
mained lcores are simply not used.

Calculation of core assignment of pktgen.py currently is supporting up to four lcores for
each of ports. If you assign fire or more lcores to a port, pktgen.py terminates to launch
app container. It is because a usecase more than four lcores is rare and calculation is to be
complicated.

Assign five lcores for a slave is failed to launch
$ python3 app/pktgen.py -l 6-11 -d vhost:1
Error: Too many cores for calculation for port assignment!
Please consider to use '--matrix' for assigning directly

Here are other examples of lcore assignment of pktgen.py to help your understanding.

1. Three lcores for two ports

6.1. SPP Container 127

http://pktgen-dpdk.readthedocs.io/en/latest/index.html
https://www.lua.org/

Soft Patch Panel Documentation, Release 19.11

Assign one lcore to master and two lcores two slaves for two ports.

$ python3 app/pktgen.py -l 6-8 -d vhost:1,vhost:2
...
-m 7.0,8.1 \

2. Seven lcores for three ports

Assign one lcore for master and each of two lcores to three slaves for three ports.

$ python3 app/pktgen.py -l 6-12 -d vhost:1,vhost:2,vhost:3
...
-m [7:8].0,[9:10].1,[11:12].2 \

3. Seven lcores for two ports

Assign one lcore for master and each of three lcores to two slaves for two ports. In this case,
each of three lcores cannot be assigned rx and tx port equally, so given two lcores to rx and
one core to tx.

$ python3 app/pktgen.py -l 6-12 -d vhost:1,vhost:2
...
-m [7-8:9].0,[10-11:12].1 \

Refer help for all of options and usges. It shows options without of EAL and container for
simplicity.

$ python3 app/pktgen.py -h
usage: pktgen.py [-h] [-l CORE_LIST] [-c CORE_MASK] [-m MEM]

[--vdev [VDEV [VDEV ...]]] [--socket-mem SOCKET_MEM]
[-b [PCI_BLACKLIST [PCI_BLACKLIST ...]]]
[-w [PCI_WHITELIST [PCI_WHITELIST ...]]]
[--single-file-segments] [--nof-memchan NOF_MEMCHAN]
[-d DEV_UIDS] [-v [VOLUME [VOLUME ...]]]
[-nq NOF_QUEUES] [--no-privileged] [-s PCAP_FILE]
[-f SCRIPT_FILE]
[-lf LOG_FILE] [-P] [-G] [-g SOCK_ADDRESS] [-T] [-N]
[--matrix MATRIX] [--dist-name DIST_NAME]
[--dist-ver DIST_VER]
[--workdir WORKDIR] [--name NAME] [-ci CONTAINER_IMAGE]
[-fg] [--dry-run]

Launcher for pktgen-dpdk application container

optional arguments:
...
-d DEV_UIDS, --dev-uids DEV_UIDS

Virtual devices of SPP in resource UID format
-nq NOF_QUEUES, --nof-queues NOF_QUEUES

Number of queues of virtio (default is 1)
--no-privileged Disable docker's privileged mode if it's needed
-s PCAP_FILE, --pcap-file PCAP_FILE

PCAP packet flow file of port, defined as
'N:filename'

-f SCRIPT_FILE, --script-file SCRIPT_FILE
Pktgen script (.pkt) to or a Lua script (.lua)

-lf LOG_FILE, --log-file LOG_FILE
Filename to write a log, as '-l' of pktgen

-P, --promiscuous Enable PROMISCUOUS mode on all ports
-G, --sock-default Enable socket support using default server values

of localhost:0x5606

(continues on next page)

6.1. SPP Container 128

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

-g SOCK_ADDRESS, --sock-address SOCK_ADDRESS
Same as -G but with an optional IP address and port
number

-T, --term-color Enable color terminal output in VT100
-N, --numa Enable NUMA support
--matrix MATRIX Matrix of cores and port as '-m' of pktgen, such as

[1:2].0 or 1.0
...

Load-Balancer Container

Load-Balancer is an application distributes packet I/O task with several worker lcores to share
IP addressing.

There are three types of lcore roles in this application, rx, tx and worker lcores. Rx lcores
retrieve packets from NICs and Tx lcores send it to the destinations. Worker lcores intermediate
them, receive packets from rx lcores, classify by looking up the address and send it to each of
destination tx lcores. Each of lcores has a set of references of lcore ID and queue as described
in Application Configuration.

load-balancer.py expects four mandatory options.

• -rx: “(PORT, QUEUE, LCORE), . . . ”, list of NIC RX ports and queues handled by the I/O
RX lcores. This parameter also implicitly defines the list of I/O RX lcores.

• -tx: “(PORT, LCORE), . . . ”, list of NIC TX ports handled by the I/O TX lcores. This
parameter also implicitly defines the list of I/O TX lcores.

• -w: The list of the worker lcores.

• –lpm: “IP / PREFIX => PORT”, list of LPM rules used by the worker lcores for packet
forwarding.

Here is an example for one rx, one tx and two worker on lcores 8-10. Both of rx and rx is
assinged to the same lcore 8. It receives packets from port 0 and forwards it port 0 or 1. The
destination port is defined as --lpm option.

$ cd /path/to/spp/tools/sppc
$ python3 app/load-balancer.py -fg -l 8-10 -d vhost:1,vhost:2 \

-rx "(0,0,8)" -tx "(0,8),(1,8)" -w 9,10 \
--lpm "1.0.0.0/24=>0; 1.0.1.0/24=>1;"

If you are succeeded to launch the app container, it shows details of rx, tx, worker lcores and
LPM rules , and starts forwarding.

...
Checking link statusdone
Port0 Link Up - speed 10000Mbps - full-duplex
Port1 Link Up - speed 10000Mbps - full-duplex
Initialization completed.
NIC RX ports: 0 (0) ;
I/O lcore 8 (socket 0): RX ports (0, 0) ; Output rings 0x7f9af7347...
Worker lcore 9 (socket 0) ID 0: Input rings 0x7f9af7347880 ;
Worker lcore 10 (socket 0) ID 1: Input rings 0x7f9af7345680 ;

NIC TX ports: 0 1 ;

(continues on next page)

6.1. SPP Container 129

https://dpdk.org/doc/guides/sample_app_ug/load_balancer.html
https://dpdk.org/doc/guides/sample_app_ug/load_balancer.html#explanation

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

I/O lcore 8 (socket 0): Input rings per TX port 0 (0x7f9af7343480 ...
Worker lcore 9 (socket 0) ID 0:
Output rings per TX port 0 (0x7f9af7343480) 1 (0x7f9af7341280) ;
Worker lcore 10 (socket 0) ID 1:
Output rings per TX port 0 (0x7f9af733f080) 1 (0x7f9af733ce80) ;
LPM rules:

0: 1.0.0.0/24 => 0;
1: 1.0.1.0/24 => 1;

Ring sizes: NIC RX = 1024; Worker in = 1024; Worker out = 1024; NIC TX...
Burst sizes: I/O RX (rd = 144, wr = 144); Worker (rd = 144, wr = 144);...
Logical core 9 (worker 0) main loop.
Logical core 10 (worker 1) main loop.
Logical core 8 (I/O) main loop.

To stop forwarding, you need to terminate the application but might not able to with Ctrl-C. In
this case, you can use docker kill command to terminate it. Find the name of container on
which load_balancer is running and kill it.

$ docker ps
CONTAINER ID IMAGE ... NAMES
80ce3711b85e sppc/dpdk-ubuntu:latest ... competent_galileo # kill it
281aa8f236ef sppc/spp-ubuntu:latest ... youthful_mcnulty
$ docker kill competent_galileo

Note: You shold care about the number of worker lcores. If you add lcore 11 and assign it for
third worker thread, it is failed to lauhch the application.

...
EAL: Probing VFIO support...
Incorrect value for --w argument (-8)

load_balancer <EAL PARAMS> -- <APP PARAMS>

Application manadatory parameters:
--rx "(PORT, QUEUE, LCORE), ..." : List of NIC RX ports and queues

handled by the I/O RX lcores
...

The reason is the number of lcore is considered as invalid in parse_arg_w() as below.
n_tuples is the number of lcores and it should be 2^n, or returned with error code.

// Defined in dpdk/examples/load_balancer/config.c
static int
parse_arg_w(const char *arg)
{

const char *p = arg;
uint32_t n_tuples;
...
if ((n_tuples & (n_tuples - 1)) != 0) {

return -8;
}
...

Here are other examples.

1. Separate rx and tx lcores

6.1. SPP Container 130

Soft Patch Panel Documentation, Release 19.11

Use four lcores 8-11 for rx, tx and two worker threads. The number of ports is same as the
previous example. You notice that rx and tx have different lcore number, 8 and 9.

$ python3 app/load-balancer.py -fg -l 8-11 -d vhost:1,vhost:2 \
-rx "(0,0,8)" \
-tx "(0,9),(1,9)" \
-w 10,11 \
--lpm "1.0.0.0/24=>0; 1.0.1.0/24=>1;"

2. Assign multiple queues for rx

To classify for three destination ports, use one rx lcore, three tx lcores and four worker lcores.
In this case, rx has two queues and using -nq 2. You should start queue ID from 0 and to be
in serial as 0,1,2,. . . , or failed to launch.

$ python3 app/load-balancer.py -fg -l 8-13 \
-d vhost:1,vhost:2,vhost:3 \
-nq 2 \
-rx "(0,0,8),(0,1,8)" \
-tx "(0,9),(1,9),(2,9)" \
-w 10,11,12,13 \
--lpm "1.0.0.0/24=>0; 1.0.1.0/24=>1; 1.0.2.0/24=>2;"

Refer options and usages by load-balancer.py -h.

$ python3 app/load-balancer.py -h
usage: load-balancer.py [-h] [-l CORE_LIST] [-c CORE_MASK] [-m MEM]

[--vdev [VDEV [VDEV ...]]]
[--socket-mem SOCKET_MEM]
[-b [PCI_BLACKLIST [PCI_BLACKLIST ...]]]
[-w [PCI_WHITELIST [PCI_WHITELIST ...]]]
[--single-file-segments]
[--nof-memchan NOF_MEMCHAN]
[-d DEV_UIDS] [-v [VOLUME [VOLUME ...]]]
[-nq NOF_QUEUES] [--no-privileged]
[-rx RX_PORTS] [-tx TX_PORTS] [-wl WORKER_LCORES]
[-rsz RING_SIZES] [-bsz BURST_SIZES]
[--lpm LPM] [--pos-lb POS_LB]
[--dist-name DIST_NAME] [--dist-ver DIST_VER]
[--workdir WORKDIR] [--name NAME]
[-ci CONTAINER_IMAGE] [-fg] [--dry-run]

Launcher for load-balancer application container

optional arguments:
...
-d DEV_UIDS, --dev-uids DEV_UIDS

Virtual devices of SPP in resource UID format
-nq NOF_QUEUES, --nof-queues NOF_QUEUES

Number of queues of virtio (default is 1)
--no-privileged Disable docker's privileged mode if it's needed
-rx RX_PORTS, --rx-ports RX_PORTS

List of rx ports and queues handled by the I/O rx
lcores

-tx TX_PORTS, --tx-ports TX_PORTS
List of tx ports and queues handled by the I/O tx
lcores

-w WORKER_LCORES, --worker-lcores WORKER_LCORES
List of worker lcores

-rsz RING_SIZES, --ring-sizes RING_SIZES
Ring sizes of 'rx_read,rx_send,w_send,tx_written'

(continues on next page)

6.1. SPP Container 131

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

-bsz BURST_SIZES, --burst-sizes BURST_SIZES
Burst sizes of rx, worker or tx

--lpm LPM List of LPM rules
--pos-lb POS_LB Position of the 1-byte field used for identify

worker
...

Suricata Container

Suricata is a sophisticated IDS/IPS application. SPP container supports suricata 4.1.4 hosted
this repository.

Unlike other scripts, app/suricata.py does not launch appliation directly but bash to enable
to edit config file on the container. Suricata accepts options from config file specified with
--dpdk option. You can copy your config to the container by using docker cp. Sample
config mysuricata.cfg is included under suricata-4.1.4.

Here is an example of launching suricata with image sppc/suricata-ubuntu2:latest
which is built as described in Build suricata image.

$ docker cp your.cnf CONTAINER_ID:/path/to/conf/your.conf
$./suricata.py -d vhost:1,vhost:2 -fg -ci sppc/suricata-ubuntu2:latest
suricata --dpdk=/path/to/config

Refer options and usages by load-balancer.py -h.

$ python3 app/suricata.py -h
usage: suricata.py [-h] [-l CORE_LIST] [-c CORE_MASK] [-m MEM]

[--vdev [VDEV [VDEV ...]]] [--socket-mem SOCKET_MEM]
[-b [PCI_BLACKLIST [PCI_BLACKLIST ...]]]
[-w [PCI_WHITELIST [PCI_WHITELIST ...]]]
[--single-file-segments]
[--nof-memchan NOF_MEMCHAN] [-d DEV_UIDS]
[-v [VOLUME [VOLUME ...]]] [-nq NOF_QUEUES]
[--no-privileged]
[--dist-name DIST_NAME] [--dist-ver DIST_VER]
[--workdir WORKDIR] [--name NAME]
[-ci CONTAINER_IMAGE] [-fg] [--dry-run]

Launcher for suricata container

optional arguments:
...
-d DEV_UIDS, --dev-uids DEV_UIDS

Virtual devices of SPP in resource UID format
-nq NOF_QUEUES, --nof-queues NOF_QUEUES

Number of queues of virtio (default is 1)
--no-privileged Disable docker's privileged mode if it's needed
--dist-name DIST_NAME

Name of Linux distribution
...

Helloworld Container

The helloworld sample application is an example of the simplest DPDK application that can be
written.

6.1. SPP Container 132

https://suricata.readthedocs.io/en/suricata-4.1.2/index.html
https://github.com/vipinpv85/DPDK_SURICATA-4_1_1
https://dpdk.org/doc/guides/sample_app_ug/hello_world.html

Soft Patch Panel Documentation, Release 19.11

Unlike from the other applications, it does not work as a network function actually. This app
container script helloworld.py is intended to be used as a template for an user defined
app container script. You can use it as a template for developing your app container script.
An instruction for developing app container script is described in How to Define Your App
Launcher .

Helloworld app container has no application specific options. There are only EAL and app
container options. You should give -l option for the simplest app container.

$ cd /path/to/spp/tools/sppc
$ python3 app/helloworld.py -l 4-6 -fg
...

6.1.6 Use Cases

SPP Container provides an easy way to configure network path for DPDK application running
on containers. It is useful for testing your NFV applications with testpmd or pktgen quickly,
or providing a reproducible environment for evaluation with a configuration files.

In addition, using container requires less CPU and memory resources comparing with using
virtual machines. It means that users can try to test variety kinds of use cases without using
expensive servers.

This chapter describes examples of simple use cases of SPP container.

Perfromance Test of Vhost in Single Node

First use case is a simple performance test of vhost PMDs as shown in Fig. 6.3. Two of
containers of spp_nfv are connected with a ring PMD and all of app container processes run
on a single node.

Fig. 6.3: Test of vhost PMD in a single node

You use three terminals in this example, first one is for spp-ctl, second one is for SPP CLI
and third one is for managing app containers. First of all, launch spp-ctl in terminal 1.

Terminal 1
$ cd /path/to/spp
$ python3 src/spp-ctl/spp-ctl

Then, spp.py in terminal 2.

Terminal 2
$ cd /path/to/spp
$ python3 src/spp.py

Move to terminal 3, launch app containers of spp_primary and spp_nfv step by step in
background mode. You notice that vhost device is attached with -d tap:1 which is not re-
quired if you have physical ports on host. It is because that SPP primary requires at least one
port even if it is no need. You can also assign a physical port instead of this vhost device.

6.1. SPP Container 133

Soft Patch Panel Documentation, Release 19.11

Terminal 3
$ cd /path/to/spp/tools/sppc
$ python3 app/spp-primary.py -l 0 -p 0x01 -d tap:1
$ python3 app/spp-nfv.py -i 1 -l 1-2
$ python3 app/spp-nfv.py -i 2 -l 3-4

Then, add two vhost PMDs for pktgen app container from SPP CLI.

Terminal 2
spp > nfv 1; add vhost:1
spp > nfv 2; add vhost:2

It is ready for launching pktgen app container. In this usecase, use five lcores for pktgen. One
lcore is used for master, and remaining lcores are used for rx and tx evenly. Device ID option
-d vhost:1,vhost:2 is for refferring vhost 1 and 2.

Terminal 3
$ python3 app/pktgen.py -fg -l 5-9 -d vhost:1,vhost:2

Finally, configure network path from SPP controller,

Terminal 2
spp > nfv 1; patch ring:0 vhost:1
spp > nfv 2; patch vhost:2 ring:0
spp > nfv 1; forward
spp > nfv 2; forward

and start forwarding from pktgen.

Terminal 3
$ Pktgen:/> start 1

You find that packet count of rx of port 0 and tx of port 1 is increased rapidlly.

Performance Test of Ring

Ring PMD is a very fast path to communicate between DPDK processes. It is a kind of zero-
copy data passing via shared memory and better performance than vhost PMD. Currently, only
spp_nfv provides ring PMD in SPP container. It is also possible other DPDK applications to
have ring PMD interface for SPP technically, but not implemented yet.

This use case is for testing performance of ring PMDs. As described in Fig. 6.4, each of app
containers on which spp_nfv is running are connected with ring PMDs in serial.

Fig. 6.4: Test of ring PMD

You use three terminals on host 1, first one is for spp-ctl, second one is for spp.py, and
third one is for spp_nfv app containers. Pktgen on host 2 is started forwarding after setup on
host 1 is finished.

First, launch spp-ctl in terminal 1.

Terminal 1
$ cd /path/to/spp
$ python3 src/spp-ctl/spp-ctl

6.1. SPP Container 134

Soft Patch Panel Documentation, Release 19.11

Then, launch spp.py in terminal 2.

Terminal 2
$ cd /path/to/spp
$ python3 src/spp.py

In terminal 3, launch spp_primary and spp_nfv containers in background mode. In this
case, you attach physical ports to spp_primary with portmask option.

Terminal 3
$ cd /path/to/spp/tools/sppc
$ python3 app/spp-primary.py -l 0 -p 0x03
$ python3 app/spp-nfv.py -i 1 -l 1-2
$ python3 app/spp-nfv.py -i 2 -l 3-4
$ python3 app/spp-nfv.py -i 3 -l 5-6
$ python3 app/spp-nfv.py -i 4 -l 7-8

Note: It might happen an error to input if the number of SPP process is increased. It also
might get bothered to launch several SPP processes if the number is large.

You can use tools/spp-launcher.py to launch SPP processes at once. Here is an exam-
ple for launching spp_primary and four spp_nfv processes. -n is for specifying the nubmer
of spp_nfv.

$ python3 tools/spp-launcher.py -n 4

You will find that lcore assignment is the same as below. Lcore is assigned from 0 for primary,
and next two lcores for the first spp_nfv.

$ python3 app/spp-primary.py -l 0 -p 0x03
$ python3 app/spp-nfv.py -i 1 -l 1,2
$ python3 app/spp-nfv.py -i 2 -l 3,4
$ python3 app/spp-nfv.py -i 3 -l 5,6
$ python3 app/spp-nfv.py -i 4 -l 7,8

You can also assign lcores with --shared to master lcore be shared among spp_nfv pro-
cesses. It is useful to reduce the usage of lcores as explained in Pktgen and L2fwd using less
Lcores.

$ python3 tools/spp-launcher.py -n 4 --shared

The result of assignment of this command is the same as below. Master lcore 1 is shared
among secondary processes.

$ python3 app/spp-primary.py -l 0 -p 0x03
$ python3 app/spp-nfv.py -i 1 -l 1,2
$ python3 app/spp-nfv.py -i 2 -l 1,3
$ python3 app/spp-nfv.py -i 3 -l 1,4
$ python3 app/spp-nfv.py -i 4 -l 1,5

Add ring PMDs considering which of rings is shared between which of containers. You can use
recipe scripts from playback command instead of typing commands step by step. For this
usecase example, it is included in recipes/sppc/samples/test_ring.rcp.

6.1. SPP Container 135

Soft Patch Panel Documentation, Release 19.11

Terminal 2
spp > nfv 1; add ring:0
spp > nfv 2; add ring:1
spp > nfv 2; add ring:2
spp > nfv 3; add ring:2
spp > nfv 3; add ring:3
spp > nfv 4; add ring:3

Then, patch all of ports to be configured containers are connected in serial.

Terminal 2
spp > nfv 1; patch phy:0 ring:0
spp > nfv 2; patch ring:0 ring:1
spp > nfv 3; patch ring:1 ring:2
spp > nfv 3; patch ring:2 ring:3
spp > nfv 4; patch ring:3 phy:1
spp > nfv 1; forward
spp > nfv 2; forward
spp > nfv 3; forward
spp > nfv 4; forward

After setup on host 1 is finished, start forwarding from pktgen on host 2. You can see the
throughput of rx and tx ports on pktgen’s terminal. You also find that the throughput is almost
not decreased and keeping wire rate speed even after it through several chained containers.

Pktgen and L2fwd

To consider more practical service function chaining like use case, connect not only SPP pro-
cesses, but also DPDK application to pktgen. In this example, use l2fwd app container as
a DPDK application for simplicity. You can also use other DPDK applications as similar to this
example as described in next sections.

Fig. 6.5: Chainning pktgen and l2fwd

This configuration requires more CPUs than previous example. It is up to 14 lcores, but you
can reduce lcores to do the trick. It is a trade-off between usage and performance. In this case,
we focus on the usage of maximum lcores to get high performance.

Here is a list of lcore assignment for each of app containers.

• One lcore for spp_primary container.

• Eight lcores for four spp_nfv containers.

• Three lcores for pktgen container.

• Two lcores for l2fwd container.

First of all, launch spp-ctl and spp.py.

Terminal 1
$ cd /path/to/spp
$ python3 src/spp-ctl/spp-ctl

Terminal 2
$ cd /path/to/spp
$ python3 src/spp.py

6.1. SPP Container 136

Soft Patch Panel Documentation, Release 19.11

Then, launch spp_primary and spp_nfv containers in background. It does not use physical
NICs as similar to Perfromance Test of Vhost in Single Node. Use four of spp_nfv containers
for using four vhost PMDs.

Terminal 3
$ cd /path/to/spp/tools/sppc
$ python3 app/spp-primary.py -l 0 -p 0x01 -d tap:1
$ python3 app/spp-nfv.py -i 1 -l 1-2
$ python3 app/spp-nfv.py -i 2 -l 3-4
$ python3 app/spp-nfv.py -i 3 -l 5-6
$ python3 app/spp-nfv.py -i 4 -l 7-8

Assign ring and vhost PMDs. Each of vhost IDs to be the same as its secondary ID.

Terminal 2
spp > nfv 1; add vhost:1
spp > nfv 2; add vhost:2
spp > nfv 3; add vhost:3
spp > nfv 4; add vhost:4
spp > nfv 1; add ring:0
spp > nfv 4; add ring:0
spp > nfv 2; add ring:1
spp > nfv 3; add ring:1

After vhost PMDs are created, you can launch containers of pktgen and l2fwd.

In this case, pktgen container owns vhost 1 and 2,

Terminal 3
$ cd /path/to/spp/tools/sppc
$ python3 app/pktgen.py -l 9-11 -d vhost:1,vhost:2

and l2fwd container owns vhost 3 and 4.

Terminal 4
$ cd /path/to/spp/tools/sppc
$ python app/l2fwd.py -l 12-13 -d vhost:3,vhost:4

Then, configure network path by pactching each of ports and start forwarding from SPP con-
troller.

Terminal 2
spp > nfv 1; patch ring:0 vhost:1
spp > nfv 2; patch vhost:2 ring:1
spp > nfv 3; patch ring:1 vhost:3
spp > nfv 4; patch vhost:4 ring:0
spp > nfv 1; forward
spp > nfv 2; forward
spp > nfv 3; forward
spp > nfv 4; forward

Finally, start forwarding from pktgen container. You can see that packet count is increased on
both of pktgen and l2fwd.

For this usecase example, recipe scripts are included in recipes/sppc/samples/
pg_l2fwd.rcp.

6.1. SPP Container 137

Soft Patch Panel Documentation, Release 19.11

Pktgen and L2fwd using less Lcores

This section describes the effort of reducing the usage of lcore for Pktgen and L2fwd .

Here is a list of lcore assignment for each of app containers. It is totally 7 lcores while the
maximum number is 14.

• One lcore for spp_primary container.

• Three lcores for four spp_nfv containers.

• Two lcores for pktgen container.

• One lcores for l2fwd container.

Fig. 6.6: Pktgen and l2fwd using less lcores

First of all, launch spp-ctl and spp.py.

Terminal 1
$ cd /path/to/spp
$ python3 src/spp-ctl/spp-ctl

Terminal 2
$ cd /path/to/spp
$ python3 src/spp.py

Launch spp_primary and spp_nfv containers in background. It does not use physical NICs
as similar to Perfromance Test of Vhost in Single Node. Use two of spp_nfv containers for
using four vhost PMDs.

Terminal 3
$ cd /path/to/spp/tools/sppc
$ python3 app/spp-primary.py -l 0 -p 0x01 -d tap:1
$ python3 app/spp-nfv.py -i 1 -l 1,2
$ python3 app/spp-nfv.py -i 2 -l 1,3

The number of process and CPUs are fewer than previous example. You can reduce the
number of spp_nfv processes by assigning several vhost PMDs to one process, although
performance is decreased possibly. For the number of lcores, you can reduce it by sharing the
master lcore 1 which has no heavy tasks.

Assign each of two vhost PMDs to the processes.

Terminal 2
spp > nfv 1; add vhost:1
spp > nfv 1; add vhost:2
spp > nfv 2; add vhost:3
spp > nfv 2; add vhost:4
spp > nfv 1; add ring:0
spp > nfv 1; add ring:1
spp > nfv 2; add ring:0
spp > nfv 2; add ring:1

After vhost PMDs are created, you can launch containers of pktgen and l2fwd. These
processes also share the master lcore 1 with others.

In this case, pktgen container uses vhost 1 and 2,

6.1. SPP Container 138

Soft Patch Panel Documentation, Release 19.11

Terminal 3
$ python app/pktgen.py -l 1,4,5 -d vhost:1,vhost:2

and l2fwd container uses vhost 3 and 4.

Terminal 4
$ cd /path/to/spp/tools/sppc
$ python app/l2fwd.py -l 1,6 -d vhost:3,vhost:4

Then, configure network path by pactching each of ports and start forwarding from SPP con-
troller.

Terminal 2
spp > nfv 1; patch ring:0 vhost:1
spp > nfv 1; patch vhost:2 ring:1
spp > nfv 3; patch ring:1 vhost:3
spp > nfv 4; patch vhost:4 ring:0
spp > nfv 1; forward
spp > nfv 2; forward
spp > nfv 3; forward
spp > nfv 4; forward

Finally, start forwarding from pktgen container. You can see that packet count is increased on
both of pktgen and l2fwd.

For this usecase example, recipe scripts are included in recipes/sppc/samples/
pg_l2fwd_less.rcp.

Load-Balancer and Pktgen

Previous examples are all the single-path configurations and do not have branches. To explain
how to setup a multi-path configuration, we use Load-Balancer application in this example. It
is an application distributes packet I/O task with several worker lcores to share IP addressing.

Fig. 6.7: Multi-path configuration with load_balancer and pktgen

Packets from tx of pktgen, through ring:0, are received by rx of load_balancer. Then,
load_balancer classify the packets to decide the destionations. You can count received
packets on rx ports of pktgen.

There are six spp_nfv and two DPDK applications in this example. To reduce the number of
lcores, configure lcore assignment to share the master lcore. Do not assign several vhosts to
a process to avoid the performance degradation. It is 15 lcores required to the configuration.

Here is a list of lcore assignment for each of app containers.

• One lcore for spp_primary container.

• Seven lcores for four spp_nfv containers.

• Three lcores for pktgen container.

• Four lcores for load_balancer container.

First of all, launch spp-ctl and spp.py.

6.1. SPP Container 139

https://dpdk.org/doc/guides/sample_app_ug/load_balancer.html

Soft Patch Panel Documentation, Release 19.11

Terminal 1
$ cd /path/to/spp
$ python3 src/spp-ctl/spp-ctl

Terminal 2
$ cd /path/to/spp
$ python3 src/spp.py

Launch spp_primary and spp_nfv containers in background. It does not use physical NICs
as similar to Perfromance Test of Vhost in Single Node. Use six spp_nfv containers for using
six vhost PMDs.

Terminal 3
$ cd /path/to/spp/tools/sppc
$ python3 app/spp-primary.py -l 0 -p 0x01 -d tap:1
$ python3 app/spp-nfv.py -i 1 -l 1,2
$ python3 app/spp-nfv.py -i 2 -l 1,3
$ python3 app/spp-nfv.py -i 3 -l 1,4
$ python3 app/spp-nfv.py -i 4 -l 1,5
$ python3 app/spp-nfv.py -i 5 -l 1,6
$ python3 app/spp-nfv.py -i 6 -l 1,7

Assign ring and vhost PMDs. Each of vhost IDs to be the same as its secondary ID.

Terminal 2
spp > nfv 1; add vhost:1
spp > nfv 2; add vhost:2
spp > nfv 3; add vhost:3
spp > nfv 4; add vhost:4
spp > nfv 5; add vhost:5
spp > nfv 6; add vhost:6
spp > nfv 1; add ring:0
spp > nfv 2; add ring:1
spp > nfv 3; add ring:2
spp > nfv 4; add ring:0
spp > nfv 5; add ring:1
spp > nfv 6; add ring:2

And patch all of ports.

Terminal 2
spp > nfv 1; patch vhost:1 ring:0
spp > nfv 2; patch ring:1 vhost:2
spp > nfv 3; patch ring:2 vhost:3
spp > nfv 4; patch ring:0 vhost:4
spp > nfv 5; patch vhost:5 ring:1
spp > nfv 6; patch vhost:6 ring:2

You had better to check that network path is configured properly. topo command is useful
for checking it with a graphical image. Define two groups of vhost PMDs as c1 and c2 with
topo_subgraph command before.

Terminal 2
define c1 and c2 to help your understanding
spp > topo_subgraph add c1 vhost:1,vhost:2,vhost:3
spp > topo_subgraph add c2 vhost:4,vhost:5,vhost:6

show network diagram
spp > topo term

6.1. SPP Container 140

Soft Patch Panel Documentation, Release 19.11

Finally, launch pktgen and load_balancer app containers to start traffic monitoring.

For pktgen container, assign lcores 8-10 and vhost 1-3. -T options is required to enable color
terminal output.

Terminal 3
$ cd /path/to/spp/tools/sppc
$ python3 app/pktgen.py -l 8-10 -d vhost:1,vhost:2,vhost:3 -T

For load_balancer container, assign lcores 12-15 and vhost 4-6. Four lcores are assigned
to rx, tx and two workers. You should add -nq option because this example requires three or
more queues. In this case, assign 4 queues.

Terminal 4
$ cd /path/to/spp/tools/sppc
$ python3 app/load_balancer.py -l 11-14 \
-d vhost:4,vhost:5,vhost:6 \
-fg -nq 4 \
-rx "(0,0,11),(0,1,11),(0,2,11)" \
-tx "(0,12),(1,12),(2,12)" \
-w 13,14 \
--lpm "1.0.0.0/24=>0; 1.0.1.0/24=>1; 1.0.2.0/24=>2;"

Then, configure network path by pactching each of ports and start forwarding from SPP con-
troller.

Terminal 2
spp > nfv 1; forward
spp > nfv 2; forward
spp > nfv 3; forward
spp > nfv 4; forward
spp > nfv 5; forward
spp > nfv 6; forward

You start forwarding from pktgen container. The destination of load_balancer is decided
by considering LPM rules. Try to classify incoming packets to port 1 on the load_balancer
application.

On pktgen, change the destination IP address of port 0 to 1.0.1.100, and start.

Terminal 3
Pktgen:/> set 0 dst ip 1.0.1.100
Pktgen:/> start 0

As forwarding on port 0 is started, you will find the packet count of port 1 is increase rapidly.
You can change the destination IP address and send packets to port 2 by stopping to forward,
changing the destination IP address to 1.0.2.100 and restart forwarding.

Terminal 3
Pktgen:/> stop 0
Pktgen:/> set 0 dst ip 1.0.2.100
Pktgen:/> start 0

You might not be able to stop load_balancer application with Ctrl-C. In this case, terminate
it with docker kill directly as explained in Load-Balancer Container . You can find the name
of container from docker ps.

For this usecase example, recipe scripts are included in recipes/sppc/samples/lb_pg.
rcp.

6.1. SPP Container 141

Soft Patch Panel Documentation, Release 19.11

6.1.7 How to Define Your App Launcher

SPP container is a set of python script for launching DPDK application on a container with
docker command. You can launch your own application by preparing a container image and
install your application in the container. In this chapter, you will understand how to define
application container for your application.

Build Image

SPP container provides a build tool with version specific Dockerfiles. You should read the
Dockerfiles to understand environmental variable or command path are defined. Build tool
refer conf/env.py for the definitions before running docker build.

Dockerfiles of pktgen or SPP can help your understanding for building app container in which
your application is placed outside of DPDK’s directory. On the other hand, if you build an app
container of DPDK sample application, you do not need to prepare your Dockerfile because all
of examples are compiled while building DPDK’s image.

Create App Container Script

As explained in App Container Launchers, app container script shold be prepared for each of
applications. Application of SPP container is roughly categorized as DPDK sample apps or
not. The former case is like that you change an existing DPDK sample application and run as
a app container.

For DPDK sample apps, it is easy to build image and create app container script. On the
other hand, it is a bit complex because you should you should define environmental variables,
command path and compilation process by your own.

This section describes how to define app container script, first for DPDK sample applications,
and then second for other than them.

DPDK Sample App Container

Procedure of App container script is defined in main() and consists of three steps of (1) parsing
options, (2) setup docker command and (3) application command run inside the container.

Here is a sample code of L2fwd Container . parse_args() is defined in each of app con-
tainer scripts to parse all of EAL, docker and application specific options. It returns a result
of parse_args() method of argparse.ArgumentParser class. App container script uses
standard library module argparse for parsing the arguments.

def main():
args = parse_args()

Container image name such as 'sppc/dpdk-ubuntu:18.04'
if args.container_image is not None:

container_image = args.container_image
else:

container_image = common.container_img_name(
common.IMG_BASE_NAMES['dpdk'],
args.dist_name, args.dist_ver)

(continues on next page)

6.1. SPP Container 142

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

Check for other mandatory opitons.
if args.port_mask is None:

common.error_exit('--port-mask')

If the name of container is given via args.container_image, it is decided as a combination
of basename, distribution and its version. Basenames are defined as IMG_BASE_NAMES in
lib/common.py. In general, You do not need to change for using DPDK sample apps.

defined in lib/common.py
IMG_BASE_NAMES = {

'dpdk': 'sppc/dpdk',
'pktgen': 'sppc/pktgen',
'spp': 'sppc/spp',
'suricata': 'sppc/suricata',
}

Options can be referred via args. For example, the name of container image can be referred
via args.container_image.

Before go to step (2) and (3), you had better to check given option, expecially mandatory op-
tions. common.error_exit() is a helper method to print an error message for given option
and do exit(). In this case, --port-mask must be given, or exit with an error message.

Setup of sock_files is required for creating network interfaces for the container.
sock_files() defined in lib/app_helper.py is provided for creating socket files from
given device UIDs.

Then, setup docker command and its options as step (2). Docker options are added by us-
ing helper method setup_docker_opts() which generates commonly used options for app
containers. This methods returns a list of a part of options to give it to subprocess.call().

Setup docker command.
docker_cmd = ['sudo', 'docker', 'run', '\\']
docker_opts = app_helper.setup_docker_opts(args, sock_files)

You also notice that docker_cmd has a backslash \\ at the end of the list. It is only used to
format the printed command on the terminal. If you do no care about formatting, you do not
need to add this character.

Next step is (3), to setup the application command. You should change cmd_path to spec-
ify your application. In app/l2fwd.py, the application compiled under RTE_SDK in DPDK’s
directory, but your application might be different.

Setup l2fwd command run on container.
cmd_path = '{0:s}/examples/{2:s}/{1:s}/{2:s}'.format(

env.RTE_SDK, env.RTE_TARGET, APP_NAME)

l2fwd_cmd = [cmd_path, '\\']

Setup EAL options.
eal_opts = app_helper.setup_eal_opts(args, APP_NAME)

Setup l2fwd options.
l2fwd_opts = ['-p', args.port_mask, '\\']

While setting up EAL option in setup_eal_opts(), --file-prefix is generated by using
the name of application and a random number. It should be unique on the system because it

6.1. SPP Container 143

Soft Patch Panel Documentation, Release 19.11

is used as the name of hugepage file.

Finally, combine command and all of options before launching from subprocess.call().

cmds = docker_cmd + docker_opts + [container_image, '\\'] + \
l2fwd_cmd + eal_opts + l2fwd_opts

if cmds[-1] == '\\':
cmds.pop()

common.print_pretty_commands(cmds)

if args.dry_run is True:
exit()

Remove delimiters for print_pretty_commands().
while '\\' in cmds:

cmds.remove('\\')
subprocess.call(cmds)

There are some optional behaviors in the final step. common.print_pretty_commands()
replaces \\ with a newline character and prints command line in pretty format. If you give
--dry-run option, this launcher script prints command line and exits without launching con-
tainer.

None DPDK Sample Applications in Container

There are several application using DPDK but not included in sample applications. pktgen.
py is an example of this type of app container. As described in DPDK Sample App Container ,
app container consists of three steps and it is the same for this case.

First of all, you define parsing option for EAL, docker and your application.

def parse_args():
parser = argparse.ArgumentParser(

description="Launcher for pktgen-dpdk application container")

parser = app_helper.add_eal_args(parser)
parser = app_helper.add_appc_args(parser)

parser.add_argument(
'-s', '--pcap-file',
type=str,
help="PCAP packet flow file of port, defined as 'N:filename'")

parser.add_argument(
'-f', '--script-file',
type=str,
help="Pktgen script (.pkt) to or a Lua script (.lua)")

...

parser = app_helper.add_sppc_args(parser)
return parser.parse_args()

It is almost the same as DPDK Sample App Container , but it has options for pktgen itself. For
your application, you can simply add options to parser object.

def main():
args = parse_args()

Setup of socket files for network interfaces is the same as DPDK sample apps. However, you
might need to change paht of command which is run in the container. In app/pktgen.py,

6.1. SPP Container 144

https://dpdk.org/doc/guides/sample_app_ug/index.html

Soft Patch Panel Documentation, Release 19.11

directory of pktgen is defined as wd, and the name of application s defined as APP_NAME.
This directory can be changed with --workdir option.

Setup docker command.
if args.workdir is not None:

wd = args.workdir
else:

wd = '/root/pktgen-dpdk'
docker_cmd = ['sudo', 'docker', 'run', '\\']
docker_opts = app_helper.setup_docker_opts(args, sock_files, None, wd)

Setup pktgen command
pktgen_cmd = [APP_NAME, '\\']

Setup EAL options.
eal_opts = app_helper.setup_eal_opts(args, APP_NAME)

Finally, combine all of commands and its options and launch from subprocess.call().

cmds = docker_cmd + docker_opts + [container_image, '\\'] + \
pktgen_cmd + eal_opts + pktgen_opts

if cmds[-1] == '\\':
cmds.pop()

common.print_pretty_commands(cmds)

if args.dry_run is True:
exit()

Remove delimiters for print_pretty_commands().
while '\\' in cmds:

cmds.remove('\\')
subprocess.call(cmds)

As you can see, it is almost the same as DPDK sample app container without application path
and options of application specific.

6.2 Helper tools

Helper tools are intended to be used from other programs, such as spp-ctl or SPP CLI.

6.2.1 CPU Layout

This tool is a customized script of DPDK’s user tool cpu_layout.py. It is used from spp-ctl
to get CPU layout. The behaviour of this script is same as original one if you just run on
terminal.

$ python3 tools/helpers/cpu_layout.py
==
Core and Socket Information (as reported by '/sys/devices/system/cpu')
==

cores = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sockets = [0]

Socket 0

(continues on next page)

6.2. Helper tools 145

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

Core 0 [0]
Core 1 [1]
...

Customized version of cpu_layout.py accepts an additional option --json to output the
result in JSON format.

Output in JSON format
$ python3 tools/helpers/cpu_layout.py --json | jq
[

{
"socket_id": 0,
"cores": [

{
"core_id": 1,
"cpus": [
1

]
},
{

"core_id": 0,
"cpus": [
0

]
},
...

}
]

You can almost the same result from spp-ctl, but the order of params are just different.

Retrieve CPU layout via REST API
$ curl -X GET http://192.168.1.100:7777/v1/cpus | jq

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 505 100 505 0 0 18091 0 --:--:-- --:--:-- --:--:-- 18703
[

{
"cores": [

{
"cpus": [
1

],
"core_id": 1

},
{

"cpus": [
0

],
"core_id": 0

},
...

],
"socket_id": 0

}
]

6.2. Helper tools 146

Soft Patch Panel Documentation, Release 19.11

6.2.2 Secondary Process Launcher

It is very simple python script used to lauch a secondary process from other program. It is
intended to be used from spp_primary for launching. Here is whole lines of the script.

#!/usr/bin/env python
coding: utf-8
"""SPP secondary launcher."""

import sys
import subprocess

if len(sys.argv) > 1:
cmd = sys.argv[1:]
subprocess.call(cmd)

As you may notice, it just runs given name or path of command with options, so you can any
of command other than SPP secondary processes. However, it might be nouse for almost of
users.

The reason of why this script is required is to launch secondary process from spp_primary
indirectly to avoid launched secondaries to be zombies finally. In addtion, secondary processes
other than spp_nfv do not work correctly after launched with execv() or other siblings directly
from spp_primary.

6.3 Vdev_test

Vdev_test is a simple application that it forwards packets received from rx queue to tx queue
on the main core. It can become a secondary process of the spp_primary. It is mainly used for
testing spp_pipe but it can be used to test any virtual Ethernet devices as well.

6.3.1 Usage

vdev_test [EAL options] -- [--send] [--create devargs] device-name

Vdev_test runs foreground and stops when Ctrl-C is pressed. If --send option specified a
packet is sent first. The virtual Ethernet device can be created to specify --create option.

Note: Since the device can be created by EAL --vdev option for a primary process,
--create option mainly used by a secondary process.

6.3.2 Examples

Examining spp_pipe

It is assumed that pipe ports were created beforehand. First run vdev_test without --send
option.

6.3. Vdev_test 147

Soft Patch Panel Documentation, Release 19.11

terminal 1
$ sudo vdev_test -l 8 -n 4 --proc-type secondary -- spp_pipe0

Then run vdev_test with --send option on another terminal.

terminal 2
$ sudo vdev_test -l 9 -n 4 --proc-type secondary -- --send spp_pipe1

Press Ctrl-C to stop processes on both terminals after for a while.

Examining vhost

This example is independent of SPP. First run vdev_test using eth_vhost0 without --send
option.

terminal 1
$ sudo vdev_test -l 8 -n 4 --vdev eht_vhost0,iface=/tmp/sock0,client=1 \

--file-prefix=app1 -- eth_vhost0

Then run vdev_test using virtio_user0 with --send option on another terminal.

terminal 1
$ sudo vdev_test -l 9 -n 4 --vdev virtio_user0,path=/tmp/sock0,server=1 \

--file-prefix=app2 --single-file-segments -- --send virtio_user0

Press Ctrl-C to stop processes on both terminals after for a while.

6.3. Vdev_test 148

CHAPTER 7

API Reference

7.1 spp-ctl REST API

7.1.1 Overview

spp-ctl provides simple REST like API. It supports http only, not https.

Request and Response

Request body is JSON format. It is accepted both text/plain and application/json for
the content-type header.

A response of GET is JSON format and the content-type is application/json if the request
success.

$ curl http://127.0.0.1:7777/v1/processes
[{"type": "primary"}, ..., {"client-id": 2, "type": "vf"}]

$ curl -X POST http://localhost:7777/v1/vfs/1/components \
-d '{"core": 2, "name": "fwd0_tx", "type": "forward"}'

If a request is failed, the response is a text which shows error reason and the content-type is
text/plain.

Error code

spp-ctl does basic syntax and lexical check of a request.

149

Soft Patch Panel Documentation, Release 19.11

Table 7.1: Error codes in spp-ctl.
Error Description
400 Syntax or lexical error, or SPP returns error for the request.
404 URL is not supported, or no SPP process of client-id in a URL.
500 System error occured in spp-ctl.

7.2 Independent of Process Type

7.2.1 GET /v1/processes

Show SPP processes connected with spp-ctl.

Response

An array of dict of processes in which process type and secondary ID are defined. So, primary
process does not have this ID.

Table 7.2: Response code of getting processes.
Value Description
200 Normal response code.

Table 7.3: Response params of getting processes.
Name Type Description
type string Process type such as primary, nfv or so.
client-id integer Secondary ID, so primary does not have it.

Examples

Request

$ curl -X GET -H 'application/json' \
http://127.0.0.1:7777/v1/processes

Response

[
{
"type": "primary"

},
{
"type": "vf",
"client-id": 1

},
{

(continues on next page)

7.2. Independent of Process Type 150

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

"type": "nfv",
"client-id": 2

}
]

7.2.2 GET /v1/cpu_layout

Show CPU layout of a server on which spp-ctl running.

Response

An array of CPU socket params which consists of each of physical core ID and logical cores if
hyper threading is enabled.

Table 7.4: Response code of CPU layout.
Value Description
200 Normal response code.

Table 7.5: Response params of getting CPU layout.
Name Type Description
cores array Set of cores on a socket.
core_id integer ID of physical core.
lcores array Set of IDs of logical cores.
socket_id integer Socket ID.

Examples

Request

$ curl -X GET -H 'application/json' \
http://127.0.0.1:7777/v1/cpu_layout

Response

[
{
"cores": [

{
"core_id": 1,
"lcores": [2, 3]

},
{

"core_id": 0,
"lcores": [0, 1]

},
{

(continues on next page)

7.2. Independent of Process Type 151

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

"core_id": 2,
"lcores": [4, 5]

}
{

"core_id": 3,
"lcores": [6, 7]

}
],
"socket_id": 0

}
]

7.2.3 GET /v1/cpu_usage

Show CPU usage of a server on which spp-ctl running.

Response

An array of CPU usage of each of SPP processes. This usage consists of two params, master
lcore and lcore set including master and slaves.

Table 7.6: Response code of CPU layout.
Value Description
200 Normal response code.

Table 7.7: Response params of getting CPU layout.
Name Type Description
proc-type string Proc type such as primary, nfv or so.
master-lcore integer Lcore ID of master.
lcores array All of Lcore IDs including master and slaves.

Examples

Request

$ curl -X GET -H 'application/json' \
http://127.0.0.1:7777/v1/cpu_usage

Response

[
{
"proc-type": "primary",
"master-lcore": 0,
"lcores": [

0

(continues on next page)

7.2. Independent of Process Type 152

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

]
},
{
"proc-type": "nfv",
"client-id": 2,
"master-lcore": 1,
"lcores": [1, 2]

},
{
"proc-type": "vf",
"client-id": 3,
"master-lcore": 1,
"lcores": [1, 3, 4, 5]

}
]

7.3 spp_primary

7.3.1 GET /v1/primary/status

Show statistical information.

• Normal response codes: 200

Request example

$ curl -X GET -H 'application/json' \
http://127.0.0.1:7777/v1/primary/status

Response

Table 7.8: Response params of primary status.
Name Type Description
lcores array Array of lcores spp_primary is using.
phy_ports array Array of statistics of physical ports.
ring_ports array Array of statistics of ring ports.
pipes array Array of pipe ports.

Physical port object.

Table 7.9: Attributes of physical port of primary status.
Name Type Description
id integer Port ID of the physical port.
rx integer The total number of received packets.
tx integer The total number of transferred packets.
tx_drop integer The total number of dropped packets of transferred.
eth string MAC address of the port.

7.3. spp_primary 153

Soft Patch Panel Documentation, Release 19.11

Ring port object.

Table 7.10: Attributes of ring port of primary status.
Name Type Description
id integer Port ID of the ring port.
rx integer The total number of received packets.
rx_drop integer The total number of dropped packets of received.
tx integer The total number of transferred packets.
tx_drop integer The total number of dropped packets of transferred.

Pipe port object.

Table 7.11: Attributes of pipe port of primary status.
Name Type Description
id integer Port ID of the pipe port.
rx integer Port ID of the ring port for rx.
tx integer Port ID of the ring port for tx.

Response example

{
"lcores": [
0

],
"phy_ports": [
{

"id": 0,
"rx": 0,
"tx": 0,
"tx_drop": 0,
"eth": "56:48:4f:53:54:00"

},
{

"id": 1,
"rx": 0,
"tx": 0,
"tx_drop": 0,
"eth": "56:48:4f:53:54:01"

}
],
"ring_ports": [
{

"id": 0,
"rx": 0,
"rx_drop": 0,
"tx": 0,
"tx_drop": 0

},
{

"id": 1,
"rx": 0,
"rx_drop": 0,
"tx": 0,
"tx_drop": 0

},

(continues on next page)

7.3. spp_primary 154

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

{
"id": 2,
"rx": 0,
"rx_drop": 0,
"tx": 0,
"tx_drop": 0

}
],
"pipes": [
{

"id": 0,
"rx": 0,
"tx": 1

}
]

}

7.3.2 PUT /v1/primary/forward

Start or stop forwarding.

• Normal response codes: 204

• Error response codes: 400, 404

Request example

$ curl -X PUT -H 'application/json' -d '{"action": "start"}' \
http://127.0.0.1:7777/v1/primary/forward

Response

There is no body content for the response of a successful PUT request.

Equivalent CLI command

Action is start.

spp > pri; forward

Action is stop.

spp > pri; stop

7.3.3 PUT /v1/primary/ports

Add or delete port.

• Normal response codes: 204

• Error response codes: 400, 404

7.3. spp_primary 155

Soft Patch Panel Documentation, Release 19.11

Request (body)

Table 7.12: Request body params of ports of
spp_primary.

Name Type Description
action string add or del.
port string Resource UID of {port_type}:{port_id}.
rx string Rx ring for pipe. It is necessary for adding pipe only.
tx string Tx ring for pipe. It is necessary for adding pipe only.

Request example

$ curl -X PUT -H 'application/json' \
-d '{"action": "add", "port": "ring:0"}' \
http://127.0.0.1:7777/v1/primary/ports

For adding pipe.

$ curl -X PUT -H 'application/json' \
-d '{"action": "add", "port": "pipe:0", \
"rx": "ring:0", "tx": "ring:1"}' \
http://127.0.0.1:7777/v1/primary/ports

Response

There is no body content for the response of a successful PUT request.

Equivalent CLI command

Not supported in SPP CLI.

7.3.4 DELETE /v1/primary/status

Clear statistical information.

• Normal response codes: 204

Request example

$ curl -X DELETE -H 'application/json' \
http://127.0.0.1:7777/v1/primary/status

Response

There is no body content for the response of a successful DELETE request.

7.3. spp_primary 156

Soft Patch Panel Documentation, Release 19.11

7.3.5 PUT /v1/primary/patches

Add a patch.

• Normal response codes: 204

• Error response codes: 400, 404

Request (body)

Table 7.13: Request body params of patches of
spp_primary.

Name Type Description
src string Source port id.
dst string Destination port id.

Request example

$ curl -X PUT -H 'application/json' \
-d '{"src": "ring:0", "dst": "ring:1"}' \
http://127.0.0.1:7777/v1/primary/patches

Response

There is no body content for the response of a successful PUT request.

Equivalent CLI command

spp > pri; patch {src} {dst}

7.3.6 DELETE /v1/primary/patches

Reset patches.

• Normal response codes: 204

• Error response codes: 400, 404

Request example

$ curl -X DELETE -H 'application/json' \
http://127.0.0.1:7777/v1/primary/patches

Response

There is no body content for the response of a successful DELETE request.

7.3. spp_primary 157

Soft Patch Panel Documentation, Release 19.11

Equivalent CLI command

spp > pri; patch reset

7.3.7 DELETE /v1/primary

Terminate primary process.

• Normal response codes: 204

Request example

$ curl -X DELETE -H 'application/json' \
http://127.0.0.1:7777/v1/primary

Response

There is no body content for the response of a successful DELETE request.

7.3.8 PUT /v1/primary/launch

Launch a secondary process.

• Normal response codes: 204

• Error response codes: 400, 404

Request (body)

There are four params for launching secondary process. eal object contains a set of EAL
options, and app contains options of teh process.

Table 7.14: Request body params for launch secondary for
spp_primary.

Name Type Description
proc_name string Process name such as spp_nfv or spp_vf.
client_id integer Secondary ID for the process.
eal object Hash obj of DPDK’s EAL options.
app object Hash obj of options of secondary process.

eal object is a hash of EAL options and its values. All of EAL options are referred in EAL
parameters in DPDK’s Getting Started Guide for Linux.

app object is a hash of options of secondary process, and you can refer options of each of
processes in How to Use section.

7.3. spp_primary 158

https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html
https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html
https://doc.dpdk.org/guides/linux_gsg/index.html
https://spp-tmp.readthedocs.io/en/latest/setup/howto_use.html

Soft Patch Panel Documentation, Release 19.11

Request example

Launch spp_nfv with secondary ID 1 and lcores 1,2.

$ curl -X PUT -H 'application/json' \
-d "{'proc_name': 'spp_nfv', 'client_id': '1', \
'eal': {'-m': '512', '-l': '1,2', '--proc-type': 'secondary'}, \
'app': {'-s': '192.168.11.59:6666', '-n': '1'}}"

http://127.0.0.1:7777/v1/primary/launch

Launch spp_vf with secondary ID 2 and lcores 1,4-7.

$ curl -X PUT -H 'application/json' \
-d "{'proc_name': 'spp_vf', 'client_id': '2', \
'eal': {'-m': '512', '-l': '1,4-7', '--proc-type': 'secondary'}, \
'app': {'-s': '192.168.11.59:6666', '--client-id': '2'}}"

http://127.0.0.1:7777/v1/primary/launch

Response

There is no body content for the response of a successful PUT request.

Equivalent CLI command

proc_type is nfv, vf or mirror or so. eal_opts and app_opts are the same as launching
from command line.

pri; launch {proc_type} {sec_id} {eal_opts} -- {app_opts}

7.3.9 POST /v1/primary/flow_rules/port_id/{port_id}/validate

Validate flow rule for specific port_id.

• Normal response codes: 200

Request example

$ curl -X POST \
http://127.0.0.1:7777/v1/primary/flow_rules/port_id/0/validate \
-H "Content-type: application/json" \
-d '{ \

"rule": \
{ \
"group": 0, \
"priority": 0, \
"direction": "ingress", \
"transfer": true, \
"pattern": \
[\
"eth dst is 11:22:33:44:55:66 type mask 0xffff", \
"vlan vid is 100" \

], \
"actions": \

(continues on next page)

7.3. spp_primary 159

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

[\
"queue index 1", \
"of_pop_vlan" \

] \
} \

}'

Response

Table 7.15: Response params of validate.
Name Type Description
result string Validation result.
message string Additional information if any.

Response example

{
"result" : "success",
"message" : "Flow rule validated"

}

7.3.10 POST /v1/primary/flow_rules/port_id/{port_id}

Create flow rule for specific port_id.

• Normal response codes: 200

Request example

$ curl -X POST http://127.0.0.1:7777/v1/primary/flow_rules/port_id/0 \
-H "Content-type: application/json" \
-d '{ \

"rule": \
{ \
"group": 0, \
"priority": 0, \
"direction": "ingress", \
"transfer": true, \
"pattern": \
[\
"eth dst is 11:22:33:44:55:66 type mask 0xffff", \
"vlan vid is 100" \

], \
"actions": \
[\
"queue index 1", \
"of_pop_vlan" \

] \
} \

}'

7.3. spp_primary 160

Soft Patch Panel Documentation, Release 19.11

Response

Table 7.16: Response params of flow creation.
Name Type Description
result string Creation result.
message string Additional information if any.
rule_id string Rule id allocated if successful.

Response example

{
"result" : "success",
"message" : "Flow rule #0 created",
"rule_id" : "0"

}

7.3.11 DELETE /v1/primary/flow_rule/port_id/{port_id}

Delete all flow rule for specific port_id.

• Normal response codes: 200

Request example

$ curl -X DELETE http://127.0.0.1:7777/v1/primary/flow_rule/port_id/0

Response

Table 7.17: Response params of flow flush.
Name Type Description
result string Deletion result.
message string Additional information if any.

Response example

{
"result" : "success",
"message" : "Flow rule all destroyed"

}

7.3.12 DELETE /v1/primary/flow_rule/{rule_id}/port_id/{port_id}

Delete specific flow rule for specific port_id.

• Normal response codes: 200

7.3. spp_primary 161

Soft Patch Panel Documentation, Release 19.11

Request example

$ curl -X DELETE http://127.0.0.1:7777/v1/primary/flow_rules/0/port_id/0

Response

Table 7.18: Response params of flow deletion.
Name Type Description
result string Deletion result.
message string Additional information if any.

Response example

{
"result" : "success",
"message" : "Flow rule #0 destroyed"

}

7.4 spp_nfv

7.4.1 GET /v1/nfvs/{client_id}

Get the information of spp_nfv.

• Normal response codes: 200

• Error response codes: 400, 404

Request (path)

Table 7.19: Request parameter for getting info of spp_nfv.
Name Type Description
client_id integer client id.

Request example

$ curl -X GET -H 'application/json' \
http://127.0.0.1:7777/v1/nfvs/1

7.4. spp_nfv 162

Soft Patch Panel Documentation, Release 19.11

Response

Table 7.20: Response params of getting info of spp_nfv.
Name Type Description
client-id integer client id.
status string running or idling.
ports array an array of port ids used by the process.
patches array an array of patches.

Patch ports.

Table 7.21: Attributes of patch command of spp_nfv.
Name Type Description
src string source port id.
dst string destination port id.

Response example

{
"client-id": 1,
"status": "running",
"ports": [
"phy:0", "phy:1", "vhost:0", "vhost:1", "ring:0", "ring:1"

],
"patches": [
{

"src": "vhost:0", "dst": "ring:0"
},
{

"src": "ring:1", "dst": "vhost:1"
}

]
}

Equivalent CLI command

spp > nfv {client_id}; status

7.4.2 PUT /v1/nfvs/{client_id}/forward

Start or Stop forwarding.

• Normal response codes: 204

• Error response codes: 400, 404

7.4. spp_nfv 163

Soft Patch Panel Documentation, Release 19.11

Request (path)

Table 7.22: Request params of forward command of
spp_nfv.

Name Type Description
client_id integer client id.

Request example

$ curl -X PUT -H 'application/json' \
-d '{"action": "start"}' \
http://127.0.0.1:7777/v1/nfvs/1/forward

Request (body)

Table 7.23: Request body params of forward of spp_nfv.
Name Type Description
action string start or stop.

Response

There is no body content for the response of a successful PUT request.

Equivalent CLI command

Action is start.

spp > nfv {client_id}; forward

Action is stop.

spp > nfv {client_id}; stop

7.4.3 PUT /v1/nfvs/{client_id}/ports

Add or delete port.

• Normal response codes: 204

• Error response codes: 400, 404

Request(path)

Table 7.24: Request params of ports of spp_nfv.
Name Type Description
client_id integer client id.

7.4. spp_nfv 164

Soft Patch Panel Documentation, Release 19.11

Request (body)

Table 7.25: Request body params of ports of spp_nfv.
Name Type Description
action string add or del.
port string port id. port id is the form {interface_type}:{interface_id}.

Request example

$ curl -X PUT -H 'application/json' \
-d '{"action": "add", "port": "ring:0"}' \
http://127.0.0.1:7777/v1/nfvs/1/ports

Response

There is no body content for the response of a successful PUT request.

Equivalent CLI command

spp > nfv {client_id}; {action} {if_type} {if_id}

7.4.4 PUT /v1/nfvs/{client_id}/patches

Add a patch.

• Normal response codes: 204

• Error response codes: 400, 404

Request (path)

Table 7.26: Request params of patches of spp_nfv.
Name Type Description
client_id integer client id.

Request (body)

Table 7.27: Request body params of patches of spp_nfv.
Name Type Description
src string source port id.
dst string destination port id.

7.4. spp_nfv 165

Soft Patch Panel Documentation, Release 19.11

Request example

$ curl -X PUT -H 'application/json' \
-d '{"src": "ring:0", "dst": "ring:1"}' \
http://127.0.0.1:7777/v1/nfvs/1/patches

Response

There is no body content for the response of a successful PUT request.

Equivalent CLI command

spp > nfv {client_id}; patch {src} {dst}

7.4.5 DELETE /v1/nfvs/{client_id}/patches

Reset patches.

• Normal response codes: 204

• Error response codes: 400, 404

Request (path)

Table 7.28: Request params of deleting patches of
spp_nfv.

Name Type Description
client_id integer client id.

Request example

$ curl -X DELETE -H 'application/json' \
http://127.0.0.1:7777/v1/nfvs/1/patches

Response

There is no body content for the response of a successful DELETE request.

Equivalent CLI command

spp > nfv {client_id}; patch reset

7.4. spp_nfv 166

Soft Patch Panel Documentation, Release 19.11

7.4.6 DELETE /v1/nfvs/{client_id}

Terminate spp_nfv.

• Normal response codes: 204

• Error response codes: 400, 404

Request (path)

Table 7.29: Request parameter for terminating spp_nfv.
Name Type Description
client_id integer client id.

Request example

$ curl -X DELETE -H 'application/json' \
http://127.0.0.1:7777/v1/nfvs/1

Response example

There is no body content for the response of a successful DELETE request.

Equivalent CLI command

spp > nfv {client_id}; exit

7.5 spp_vf

7.5.1 GET /v1/vfs/{client_id}

Get the information of the spp_vf process.

• Normal response codes: 200

• Error response codes: 400, 404

Request (path)

Table 7.30: Request parameter for getting spp_vf.
Name Type Description
client_id integer client id.

7.5. spp_vf 167

Soft Patch Panel Documentation, Release 19.11

Request example

$ curl -X GET -H 'application/json' \
http://127.0.0.1:7777/v1/vfs/1

Response

Table 7.31: Response params of getting spp_vf.
Name Type Description
client-id integer Client id.
ports array Array of port ids used by the process.
components array Array of component objects in the process.
classifier_table array Array of classifier tables in the process.

Component objects:

Table 7.32: Component objects of getting spp_vf.
Name Type Description
core integer Core id running on the component
name string Array of port ids used by the process.
type string Array of component objects in the process.
rx_port array Array of port objs connected to rx of component.
tx_port array Array of port objs connected to tx of component.

Port objects:

Table 7.33: Port objects of getting spp_vf.
Name Type Description
port string port id of {interface_type}:{interface_id}.
vlan object vlan operation which is applied to the port.

Vlan objects:

Table 7.34: Vlan objects of getting spp_vf.
Name Type Description
operation string add, del or none.
id integer vlan id.
pcp integer vlan pcp.

Classifier table:

Table 7.35: Vlan objects of getting spp_vf.
Name Type Description
type string mac or vlan.
value string mac_address or vlan_id/mac_address.
port string port id applied to classify.

7.5. spp_vf 168

Soft Patch Panel Documentation, Release 19.11

Response example

{
"client-id": 1,
"ports": [
"phy:0", "phy:1", "vhost:0", "vhost:1", "ring:0", "ring:1"

],
"components": [
{

"core": 2,
"name": "fwd0_tx",
"type": "forward",
"rx_port": [

{
"port": "ring:0",
"vlan": { "operation": "none", "id": 0, "pcp": 0 }
}

],
"tx_port": [

{
"port": "vhost:0",
"vlan": { "operation": "none", "id": 0, "pcp": 0 }

}
]

},
{

"core": 3,
"type": "unuse"

},
{

"core": 4,
"type": "unuse"

},
{

"core": 5,
"name": "fwd1_rx",
"type": "forward",
"rx_port": [

{
"port": "vhost:1",
"vlan": { "operation": "none", "id": 0, "pcp": 0 }
}

],
"tx_port": [

{
"port": "ring:3",
"vlan": { "operation": "none", "id": 0, "pcp": 0 }

}
]

},
{

"core": 6,
"name": "cls",
"type": "classifier",
"rx_port": [

{
"port": "phy:0",
"vlan": { "operation": "none", "id": 0, "pcp": 0 }

}
],
"tx_port": [

{
(continues on next page)

7.5. spp_vf 169

Soft Patch Panel Documentation, Release 19.11

(continued from previous page)

"port": "ring:0",
"vlan": { "operation": "none", "id": 0, "pcp": 0 }

},
{
"port": "ring:2",
"vlan": { "operation": "none", "id": 0, "pcp": 0 }

}
]

},
{

"core": 7,
"name": "mgr1",
"type": "merge",
"rx_port": [

{
"port": "ring:1",
"vlan": { "operation": "none", "id": 0, "pcp": 0 }

},
{
"port": "ring:3",
"vlan": { "operation": "none", "id": 0, "pcp": 0 }

}
],
"tx_port": [

{
"port": "phy:0",
"vlan": { "operation": "none", "id": 0, "pcp": 0 }

}
]

},
],
"classifier_table": [
{

"type": "mac",
"value": "FA:16:3E:7D:CC:35",
"port": "ring:0"

}
]

}

The component which type is unused is to indicate unused core.

Equivalent CLI command

spp > vf {client_id}; status

7.5.2 POST /v1/vfs/{client_id}/components

Start component.

• Normal response codes: 204

• Error response codes: 400, 404

7.5. spp_vf 170

Soft Patch Panel Documentation, Release 19.11

Request (path)

Table 7.36: Request params of components of spp_vf.
Name Type Description
client_id integer client id.

Request (body)

type param is oen of forward, merge or classifier.

Table 7.37: Response params of components of spp_vf.
Name Type Description
name string component name should be unique among processes.
core integer core id.
type string component type.

Request example

$ curl -X POST -H 'application/json' \
-d '{"name": "fwd1", "core": 12, "type": "forward"}' \
http://127.0.0.1:7777/v1/vfs/1/components

Response

There is no body content for the response of a successful POST request.

Equivalent CLI command

spp > vf {client_id}; component start {name} {core} {type}

7.5.3 DELETE /v1/vfs/{sec id}/components/{name}

Stop component.

• Normal response codes: 204

• Error response codes: 400, 404

Request (path)

Table 7.38: Request params of deleting component of
spp_vf.

Name Type Description
client_id integer client id.
name string component name.

7.5. spp_vf 171

Soft Patch Panel Documentation, Release 19.11

Request example

$ curl -X DELETE -H 'application/json' \
http://127.0.0.1:7777/v1/vfs/1/components/fwd1

Response

There is no body content for the response of a successful POST request.

Equivalent CLI command

spp > vf {client_id}; component stop {name}

7.5.4 PUT /v1/vfs/{client_id}/components/{name}/ports

Add or delete port to the component.

• Normal response codes: 204

• Error response codes: 400, 404

Request (path)

Table 7.39: Request params for ports of component of
spp_vf.

Name Type Description
client_id integer client id.
name string component name.

Request (body)

Table 7.40: Request body params for ports of component of
spp_vf.

Name Type Description
action string attach or detach.
port string port id of {interface_type}:{interface_id}.
dir string rx or tx.
vlan object vlan operation applied to port. it can be omitted.

Vlan object:

7.5. spp_vf 172

Soft Patch Panel Documentation, Release 19.11

Table 7.41: Request body params for vlan ports of compo-
nent of spp_vf.

Name Type Description
operation string add, del or none.
id integer vid. ignored if operation is del or none.
pcp integer pcp. ignored if operation is del or none.

Request example

$ curl -X PUT -H 'application/json' \
-d '{"action": "attach", "port": "vhost:1", "dir": "rx", \

"vlan": {"operation": "add", "id": 677, "pcp": 0}}' \
http://127.0.0.1:7777/v1/vfs/1/components/fwd1/ports

$ curl -X PUT -H 'application/json' \
-d '{"action": "detach", "port": "vhost:0", "dir": "tx"}' \
http://127.0.0.1:7777/v1/vfs/1/components/fwd1/ports

Response

There is no body content for the response of a successful PUT request.

Equivalent CLI command

Action is attach.

spp > vf {client_id}; port add {port} {dir} {name}

Action is attach with vlan tag feature.

Add vlan tag
spp > vf {client_id}; port add {port} {dir} {name} add_vlantag {id} {pcp}

Delete vlan tag
spp > vf {client_id}; port add {port} {dir} {name} del_vlantag

Action is detach.

spp > vf {client_id}; port del {port} {dir} {name}

7.5.5 PUT /v1/vfs/{sec id}/classifier_table

Set or Unset classifier table.

• Normal response codes: 204

• Error response codes: 400, 404

7.5. spp_vf 173

Soft Patch Panel Documentation, Release 19.11

Request (path)

Table 7.42: Request params for classifier_table of spp_vf.
Name Type Description
client_id integer client id.

Request (body)

For vlan param, it can be omitted if it is for mac.

Table 7.43: Request body params for classifier_table of
spp_vf.

Name Type Description
action string add or del.
type string mac or vlan.
vlan integer or null vlan id for vlan. null for mac.
mac_address string mac address.
port string port id.

Request example

Add an entry of port ring:0 with MAC address FA:16:3E:7D:CC:35 to the table.

$ curl -X PUT -H 'application/json' \
-d '{"action": "add", "type": "mac", \

"mac_address": "FA:16:3E:7D:CC:35", \
"port": "ring:0"}' \

http://127.0.0.1:7777/v1/vfs/1/classifier_table

Delete an entry of port ring:0 with MAC address FA:16:3E:7D:CC:35 from the table.

$ curl -X PUT -H 'application/json' \
-d '{"action": "del", "type": "vlan", "vlan": 475, \

"mac_address": "FA:16:3E:7D:CC:35", "port": "ring:0"}' \
http://127.0.0.1:7777/v1/vfs/1/classifier_table

Response

There is no body content for the response of a successful PUT request.

Equivalent CLI command

Type is mac.

spp > vf {cli_id}; classifier_table {action} mac {mac_addr} {port}

Type is vlan.

7.5. spp_vf 174

Soft Patch Panel Documentation, Release 19.11

spp > vf {cli_id}; classifier_table {action} vlan {vlan} {mac_addr} {port}

7.6 spp_mirror

7.6.1 GET /v1/mirrors/{client_id}

Get the information of the spp_mirror process.

• Normal response codes: 200

• Error response codes: 400, 404

Request (path)

Table 7.44: Request parameter for getting spp_mirror.
Name Type Description
client_id integer client id.

Request example

$ curl -X GET -H 'application/json' \
http://127.0.0.1:7777/v1/mirrors/1

Response

Table 7.45: Response params of getting spp_mirror.
Name Type Description
client-id integer client id.
ports array an array of port ids used by the process.
components array an array of component objects in the process.

Component objects:

Table 7.46: Component objects of getting spp_mirror.
Name Type Description
core integer core id running on the component
name string an array of port ids used by the process.
type string an array of component objects in the process.
rx_port array an array of port objects connected to the rx side of the component.
tx_port array an array of port objects connected to the tx side of the component.

Port objects:

7.6. spp_mirror 175

Soft Patch Panel Documentation, Release 19.11

Table 7.47: Port objects of getting spp_vf.
Name Type Description
port string port id. port id is the form {interface_type}:{interface_id}.

Response example

{
"client-id": 1,
"ports": [
"phy:0", "phy:1", "ring:0", "ring:1", "ring:2"

],
"components": [
{

"core": 2,
"name": "mr0",
"type": "mirror",
"rx_port": [

{
"port": "ring:0"
}

],
"tx_port": [
{
"port": "ring:1"

},
{
"port": "ring:2"

}
]

},
{

"core": 3,
"type": "unuse"

}
]

}

The component which type is unused is to indicate unused core.

Equivalent CLI command

spp > mirror {client_id}; status

7.6.2 POST /v1/mirrors/{client_id}/components

Start component.

• Normal response codes: 204

• Error response codes: 400, 404

7.6. spp_mirror 176

Soft Patch Panel Documentation, Release 19.11

Request (path)

Table 7.48: Request params of components of spp_mirror.
Name Type Description
client_id integer client id.

Request (body)

Table 7.49: Response params of components of spp_mirror.
Name Type Description
name string component name. must be unique in the process.
core integer core id.
type string component type. only mirror is available.

Request example

$ curl -X POST -H 'application/json' \
-d '{"name": "mr1", "core": 12, "type": "mirror"}' \
http://127.0.0.1:7777/v1/mirrors/1/components

Response

There is no body content for the response of a successful POST request.

Equivalent CLI command

spp > mirror {client_id}; component start {name} {core} {type}

7.6.3 DELETE /v1/mirrors/{client_id}/components/{name}

Stop component.

• Normal response codes: 204

• Error response codes: 400, 404

Request (path)

Table 7.50: Request params of deleting component of
spp_mirror.

Name Type Description
client_id integer client id.
name string component name.

7.6. spp_mirror 177

Soft Patch Panel Documentation, Release 19.11

Request example

$ curl -X DELETE -H 'application/json' \
http://127.0.0.1:7777/v1/mirrors/1/components/mr1

Response

There is no body content for the response of a successful POST request.

Equivalent CLI command

spp > mirror {client_id}; component stop {name}

7.6.4 PUT /v1/mirrors/{client_id}/components/{name}/ports

Add or delete port to the component.

• Normal response codes: 204

• Error response codes: 400, 404

Request (path)

Table 7.51: Request params for ports of component of
spp_mirror.

Name Type Description
client_id integer client id.
name string component name.

Request (body)

Table 7.52: Request body params for ports of component of
spp_mirror.

Name Type Description
action string attach or detach.
port string port id. port id is the form {interface_type}:{interface_id}.
dir string rx or tx.

Request example

Attach rx port of ring:1 to component named mr1.

$ curl -X PUT -H 'application/json' \
-d '{"action": "attach", "port": "ring:1", "dir": "rx"}' \
http://127.0.0.1:7777/v1/mirrors/1/components/mr1/ports

7.6. spp_mirror 178

Soft Patch Panel Documentation, Release 19.11

Detach tx port of ring:1 from component named mr1.

$ curl -X PUT -H 'application/json' \
-d '{"action": "detach", "port": "ring:0", "dir": "tx"}' \
http://127.0.0.1:7777/v1/mirrors/1/components/mr1/ports

Response

There is no body content for the response of a successful PUT request.

Equivalent CLI command

Action is attach.

spp > mirror {client_id}; port add {port} {dir} {name}

Action is detach.

spp > mirror {client_id}; port del {port} {dir} {name}

7.7 spp_pcap

7.7.1 GET /v1/pcaps/{client_id}

Get the information of the spp_pcap process.

• Normal response codes: 200

• Error response codes: 400, 404

Request (path)

Table 7.53: Request parameter for getting spp_pcap info.
Name Type Description
client_id integer client id.

Request example

$ curl -X GET -H 'application/json' \
http://127.0.0.1:7777/v1/pcaps/1

7.7. spp_pcap 179

Soft Patch Panel Documentation, Release 19.11

Response

Table 7.54: Response params of getting spp_pcap.
Name Type Description
client-id integer client id.
status string status of the process. “running” or “idle”.
core array an array of core objects in the process.

Core objects:

Table 7.55: Core objects of getting spp_pcap.
Name Type Description
core in-

te-
ger

core id

role string role of the task running on the core. “receive” or “write”.
rx_port ar-

ray
an array of port object for caputure. This member exists if role is “recieve”.
Note that there is only a port object in the array.

file-
name

string a path name of output file. This member exists if role is “write”.

There is only a port object in the array.

Port object:

Table 7.56: Port objects of getting spp_pcap.
Name Type Description
port string port id. port id is the form {interface_type}:{interface_id}.

Response example

{
"client-id": 1,
"status": "running",
"core": [
{

"core": 2,
"role": "receive",
"rx_port": [

{
"port": "phy:0"
}

]
},
{

"core": 3,
"role": "write",
"filename": "/tmp/spp_pcap.20181108110600.ring0.1.2.pcap"

}
]

}

7.7. spp_pcap 180

Soft Patch Panel Documentation, Release 19.11

Equivalent CLI command

spp > pcap {client_id}; status

7.7.2 PUT /v1/pcaps/{client_id}/capture

Start or Stop capturing.

• Normal response codes: 204

• Error response codes: 400, 404

Request (path)

Table 7.57: Request params of capture of spp_pcap.
Name Type Description
client_id integer client id.

Request (body)

Table 7.58: Request body params of capture of spp_pcap.
Name Type Description
action string start or stop.

Request example

$ curl -X PUT -H 'application/json' \
-d '{"action": "start"}' \
http://127.0.0.1:7777/v1/pcaps/1/capture

Response

There is no body content for the response of a successful PUT request.

Equivalent CLI command

Action is start.

spp > pcap {client_id}; start

Action is stop.

spp > pcap {client_id}; stop

7.7. spp_pcap 181

Soft Patch Panel Documentation, Release 19.11

7.7.3 DELETE /v1/pcaps/{client_id}

Terminate spp_pcap process.

• Normal response codes: 204

• Error response codes: 400, 404

Request (path)

Table 7.59: Request parameter for terminating spp_pcap.
Name Type Description
client_id integer client id.

Request example

$ curl -X DELETE -H 'application/json' \
http://127.0.0.1:7777/v1/pcaps/1

Response example

There is no body content for the response of a successful DELETE request.

Equivalent CLI command

spp > pcap {client_id}; exit

7.7. spp_pcap 182

CHAPTER 8

Bug Report

SPP is hosted project of DPDK. DPDK uses Bugzilla as its bug tracking system.

Users can issue SPP related bugs in the following link:

https://bugs.dpdk.org/enter_bug.cgi?product=SPP

Note that to issue new bug, you have to create account to the Bugzilla.

You can view open SPP related bugs in the following link:

https://bugs.dpdk.org/buglist.cgi?bug_status=__open__&product=SPP

This documentation is the latest tagged version, but some of the latest developing features
might be not included. All of features not included in this documentation is described in the
developing version of SPP documentation.

183

https://bugs.dpdk.org/enter_bug.cgi?product=SPP
https://bugs.dpdk.org/buglist.cgi?bug_status=__open__&product=SPP
https://spp.readthedocs.io/en/latest/

	Overview
	Design
	Soft Patch Panel
	SPP Controller
	SPP Primary
	SPP Secondary
	Implementation

	Getting Started Guide
	Setup
	Install DPDK and SPP
	How to Use
	Performance Optimization

	Use Cases
	spp_nfv
	spp_vf
	spp_mirror
	spp_pcap
	Multiple Nodes
	Hardware Offload
	Pipe PMD

	SPP Commands
	Primary Commands
	Secondary Commands
	Common Commands
	Experimental Commands

	Tools
	SPP Container
	Helper tools
	Vdev_test

	API Reference
	spp-ctl REST API
	Independent of Process Type
	spp_primary
	spp_nfv
	spp_vf
	spp_mirror
	spp_pcap

	Bug Report

